

The Mediocre
Programmer

CRAIG MALONEY

The Mediocre Programmer
Copyright c 2020 Craig Maloney

Some rights reserved.

Published in the United States by
Craig Maloney

http://themediocreprogrammer.com

This book is distributed under a Creative Commons
Attribution-Sharealike 4.0 License.

cba

That means you are free:

• To Share – copy and redistribute the material in any medium or format.
• To Adapt – remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow the license terms:

• Attribution – You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable man-
ner, but not in any way that suggests the licensor endorses you or your use.

• Share Alike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological mea-
sures that legally restrict others from doing anything the license permits.

Cover Artist: David Revoy
Editor: Sharon Maloney

Introduction

The Mediocre Programmer?

Let’s face it: we don’t want to be mediocre programmers. We want to

be [great|amazing|superlative] programmers! We want

to be the programmers they call whenever they’re in a bind, and we

want to be the programmers that rush into unfamiliar code bases and

produce perfect code in a matter of minutes. Code that would sit in the

Louvre as a work of art, studied by generations of programmers for its

intrinsic beauty and exceptional functionality.

Why would we want to be mediocre programmers? Isn’t mediocre

the opposite of great? Shouldn’t we strive to be great programmers

instead?

Sure, we should strive to be great programmers in the long term, but

to become great programmers we have to pass through the mediocre

programmer stage first.

Mediocre programmers know they’re not great programmers (yet).

Mediocre programmers see the distance between where they are and

the greatness they want in their programming careers. They see the

2 The Mediocre Programmer

work that goes into a being great programmers and believe that if they

do the work they too will become great programmers.

But they also see their own faults and failings. They see their

browser history littered with online-searches for basic syntax and

concepts. They see their email archives of questions they’ve asked

other programmers. They wince at their code from several months

ago and wonder if they’ll ever get to be great programmers with all

of these mistakes and missteps. They see the gap between them and

great programmers, and it feels like the gap widens every step of the

way.

The mediocre programmer wonders if it’s even worth it. They won-

der if they should do something else with their lives other than com-

puter programming. Maybe they’re not as good as they thought they

were, or maybe they lack that special talent that great programmers

have. Maybe they feel they learned the wrong things early on in their

journeys, or maybe they think they should have started sooner.

They see others being wildly successful and wonder if they were

absent the day the great programmer genes were handed out.

The truth is we’re all mediocre programmers in some way. We all

still ask questions and have to look up syntax and concepts in our day-

to-day programming. Computers continue to evolve and programmers

keep adding complexity to everyday programming tasks. It takes a lot

of mental bandwidth to keep all of those concepts fresh in our mind.

Why this book?

This book is about helping you on your journey as a mediocre program-

mer. Together we’ll uncover some of common misconceptions we have

3

about programming, failure, and growth. We’ll understand that the

act of programming and development is something we undertake every

day. Every day we can improve in small ways. It’s these small changes

that transform us from being mediocre programmers into better pro-

grammers.

There are plenty of books on how to become a better programmer

out there. They tend to have checklists and other advice that the au-

thor deems important enough for you to do in order to become a better

programmer. They tend to focus on specific improvements like choos-

ing a better editor, writing better test cases, or drinking lots of water.

Those books have lots of useful advice, but they read like a laundry list

of things that you must do all at once in order to succeed. This book

will try not to saddle you with more work (you likely have enough as

it is). Rather, we’ll discuss what it feels like to be a programmer. We’ll

talk about the emotions that show up while we’re programming; the

feelings of frustration, guilt, anger, and inadequacy. We’ll cover the

struggles in learning new things and keeping your skills current. We’ll

talk about those times when you feel like giving up and walking away

from computing and whether those feelings come from a place of love

or a worry that you’re not keeping up.

This book is a personal journey for both of us. It’s a memoir of

my time as a programmer and my feelings along the way. I’ve thought

many times about giving up and finding a different career path but

doing anything other than being a computer programmer scares me

even more. Does that mean I’m stuck in a perverse Ouroboros of self-

pity and self-doubt? Hardly. It means that I need to dig deeper to

understand why I chose the path of being a programmer and realize

4 The Mediocre Programmer

that it took a lot to get here and it’s going to take a lot more to get

where I want to be. It’s a commitment to seeing things as they are now

and moving forward from wherever I’m standing.

Disclaimer

I am not a professional doctor or a therapist. I’m not qualified to give

you medical advice. I’m a programmer. All of the information in this

book is given from the perspective of a struggling programmer and

should not be taken as medical advice. If you need help from a medical

professional please seek out that help (There is an entire chapter about

seeking help from others near the end of this book).

Let’s begin our journey by figuring out where we are and remem-

bering what lead us to this place.

Chapter 1

Journey of The Mediocre
Programmer

How we got here

You have your own unique story of how you got here as a programmer.

You might have found out about programming as a curious child who

wanted to see what the computer could do. Or you could have arrived

as an adult who heard about these things called computers that you

could program. Whatever the case, you had a journey to get to this

point, and you learned a certain amount to get here. You spent your

free time learning how to code, or you were fortunate to be able to work

on programming as part of your job. You went to school to learn more

about programming or you took training classes. You bought books or

read articles online to learn more about programming. Whatever path

you took you began your journey as a programmer.

And now you feel stuck.

6 The Mediocre Programmer

You look around and wonder if you’ll ever know everything that

you should know. You read an article on a site and your interest is

piqued. An online friend mentions this neat thing that they’ve found

and expects that you will learn more about it. Your colleague found

something that might solve an issue you’re having on a project and

now you have one more thing to learn.

New topics and technologies seem to emerge almost weekly. These

“things” creep into our programming discussions and in our work. Per-

haps you’re finding these new things appearing in job postings requir-

ing a minimum of 3+ years of experience, and you’re wondering how

could anyone have that level of experience. Perhaps you chose to ig-

nore these things for a while and now they’ve become a driving factor

in your work. It’s as if someone flipped a bit and now you’re unworthy

of being called a programmer unless you were an early adopter of these

things.

Each of these experiences causes you to feel as though you are in-

complete without learning these new things. They show us that no

matter what our current experience is there are still gaps in our knowl-

edge that must be filled. As you look to the horizon you can see the

gaps that creep up in between where you are and where you think you

should be.

The Gap

I’ve chosen the word “gap” to describe the difference between where

you are now and where you think you should be for good reason. A

gap is something imposed by others, whether by force or by neglect.

If a gap appears in your garden fence it means the fence is weaker at

Chapter 1 - Journey of The Mediocre Programmer 7

protecting the garden. A gap can also be something that requires our

attention. “Mind the gap” is a phrase coined in the late 1960s by the

London Underground to warn folks of the space between the platform

and the train cars. If people aren’t careful around that gap it could lead

to an unsafe situation.

The gap in this case is the distance between our current abilities and

where we think we should be. Sometimes the gaps are self-imposed

because of our desires to improve ourselves, but more often the gap is

externally imposed.

One of the biggest creators of gaps in our programming career is

change. As programmers we are fully aware of the cycle of change in

programming culture. We’re constantly having changes thrown at us:

changing technology, changing priorities at work, or even changing our

strategies to try to keep up with the demands made of us.

Change can also come fromwithin our community. Our community

of programmers and users could move on to new positions and new

technologies. We may no longer get the support we need to do our jobs

and be faced with the prospect that we too need to update our skills or

be left behind in an abandoned community.

Change can lead to stress. Stress is prevalent in programmer circles

because things are often changing. What worked on Friday afternoon

can be broken onMondaymorning because of a change to a library that

we were using. Our development environment could break because of

an upgrade that didn’t apply properly. Production might need security

fixes, and those fixesmeanwe have to redo amajor piece of our software

because it no longer works. There are plenty of ways in which we are

kept in a cycle of change.

8 The Mediocre Programmer

Not all change is bad. The software that we use could have very

good reasons for changing. New features might be introduced that re-

quire new ways of thinking about your code. Security fixes may mean

that our systems aremore resilient to outside attacks, but require differ-

ent ways of using that system. New and better optimizations may lead

to our code running faster but needing a few tweaks to take advantage

of those speed benefits. A refactor of an API can lead to cleaner and

more concise ways of interacting with another system, but introduce

changes that are not backward-compatible with current code.

Change can be positive, but change requires time and effort in or-

der to adapt to it. The gap can only be closed if we have the resources

and time to work on it. If we’re struggling with our current workload

and someone changes how something works we now have to budget

our time to adapt to that change. If our mental-muscle-memory knew

how something worked and is now faced with a significant change it re-

quires us to re-train that mental-muscle-memory to match how it now

works. And if you’re already feeling like you don’t understand the sys-

tems and environments that you’re working on then adding additional

change can leave you feeling stranded among the newly-formed gaps

in your knowledge.

Closing The Gap

I’d love to tell you that there’s a way to close the gap; a way to say

you’ve learned it all and can feel confident that you have mastered the

totality of programming.

Sadly, I haven’t found a way to close all of the gaps.

You can keep learning everything there is to know about whatever

Chapter 1 - Journey of The Mediocre Programmer 9

topic you’ve chosen to learn. You can take every course available. You

can attend every talk and colloquium, read papers about the subject,

and even do your own research, and you can still feel like you haven’t

closed the gap.

So if there’s no way to completely close the gap what can you do?

There are three options available to you:

The first option is not to try. Realize there will always be more to

learn. Why bother? It’s easier to tell yourself you’ll never be able to

close the gaps in your knowledge. The best option, you tell yourself, is

to stick with what you know and ride that out as long as you can.

The second option is to try to do everything at once. You grab every

book, blog post, paper, video, or what-have-you to try to learn the topic.

Next, you realize that you only have a finite amount of time to learn

the topic, and that you can’t use all of that material at once. You look

over your progress and despair that your learning is not progressing

as quickly as you would like. You blame the materials for your lack of

progress and look for something else that will help you better learn the

topic. Frustration sets in as you blame yourself for not starting earlier

to close this gap.

The third option is the more measured approach. You start small

with small tasks and work your way toward the goal. Rather than look

at the gap as something to be closed, you realize that you can’t know

the totality of whatever topic you’re learning. You enjoy the knowledge

you receive in the pursuit of learning the topic. You keep a steady pace

toward learning as much as you can. Instead of lamenting that you

didn’t start sooner you’re grateful that you started at all.

Of these three options the first and third are the ones where you’ll

10 The Mediocre Programmer

find the most contentment. The first option (not trying) allows you to

sit with the knowledge you have. But there’s a downside to just staying

in place. Our industry is constantly changing and technology continues

to move. What used to be the norm becomes legacy and what was just

around the corner becomes the thing that is in demand.

One of the most useful skills of a programmer is the ability to adapt

to new technology. As our technological environment changes, our abil-

ity to adapt to those changes allows us to continue on as programmers.

Faster machines, different technologies, different devices, different re-

quirements; each of these brings us exciting challenges if we recognize

them. But they also take time to learn and create gaps in our knowl-

edge. Relying on our previous knowledge to carry us through these

changes isn’t going to be enough. We’re challenged to adapt to the

new surroundings.

The second option (trying to cram and becoming frustrated) is the

least optimal path. Trying to learn by grabbing every available resource

and jamming it into our brains is a path to frustration, fatigue, and

burnout. Many developers try this because they feel the need to adapt

to the new environment, but it’s difficult to make sweeping changes

all at once. It’s like trying to evolve wings because you’re late for an

appointment: you’ll be frustrated with your inability to grow wings

and still be late for your appointment. The second option also mea-

sures your progress by how much further you feel you need to go. It

discounts the progress you’ve made, and creates an endless cycle of

running toward a moving finish line.

Of the three options it’s the third option that makes the most sense.

Taking a measured approach in closing the gaps of our knowledge al-

Chapter 1 - Journey of The Mediocre Programmer 11

lows us more joy in our learning process. By breaking down each of the

steps on our journey we give ourselves little wins along the way. In-

stead of expecting a grand transformation we allow ourselves gradual

changes and mutations to adapt to our environment.

With this measured and gradual approach we also gain the wisdom

that we don’t have to close all of the gaps. We can allow ourselves to

keep learning in the areas that we need to and gradually build up our

skills.

We also can realize that closing the gap is an illusion. As long as

we’re alive there will always be gaps; new things are created every day.

We can choose how far we want to go to become more expert in what-

ever topic we chose to learn. We can still strive to learn as much as we

can, but we do so with a sense of joy in the learning process, not from

some perverse need to try to collect the totality of computing knowl-

edge into our heads.

The Journey is the Reward

The secret to moving forward in our journey as programmers and de-

velopers is realizing that each step we take along that path is valuable

and worthy of our attention. Just because we haven’t learned the latest

technology in a fortnight doesn’t mean we should give up trying. Nor

does learning a technology only to watch it become overshadowed by

something else mean that our learning time was wasted. Every chal-

lenge we face, every technology we learn, and every hour we spend cod-

ing is another step on our journey to becoming better programmers.

Each mistake and wrong turn introduces us to opportunities to learn

from those mistakes and grow as programmers and developers. There

12 The Mediocre Programmer

is no perfect path toward becoming better at this. Even if there were

I’m sure we could point to any point in our past and say that it was less

than perfect. Carving the perfect path from where we are to where we

wish to be is not possible. Worse, it is an illusion that keeps us from

moving forward in our daily practice of programming and developing.

It may seem trite to say “the journey is the reward” but every day we

work as a programmer and developer is one day closer to shoring up

those gaps in our knowledge and becoming more content with how our

skills are growing.

Chapter 2

Traveling Companions

Famous programmers

Throughout the history of computing there have been folks who have

demonstrated amazing coding abilities. They exist in the pantheon of

great computer programmers: Ada Lovelace (the first computer pro-

grammer), Dennis Ritchie (creator of the C programming language),

Rear Admiral Grace Murray Hopper (creator of COBOL and credited

with finding the first documented computer “bug”), and so on. We also

have developers in our own communities that have a certain celebrity

status, whether they’re the folks who wrote the language we currently

use, the folks who maintain the operating system we use, or someone

who rose to prominence in our chosen community. It can be intim-

idating when we compare ourselves with these luminaries. After all,

whatever we’re currently working on might not measure up to what-

ever they have done. Worse, we may be working on something similar

and feel like whatever we’re working on will never measure up to what

14 The Mediocre Programmer

these folks have accomplished. We may even be friends with program-

mers who seem to figure out things much quicker and cleaner than we

can and marvel at how they seem to have this body of knowledge at

their fingertips that we can’t possibly understand.

Backstage vs. performance

One of the best pieces of advice I have received about comparing our-

selves to others is realizing that the comparison is between our back-

stage versus their performance. The metaphor draws from the the-

ater, where performers know every thing that isn’t right about their

own theater-group’s performance and unfairly compare it with another

theater-group’s finished performance. This metaphor is useful to us be-

cause we tend to compare all of the things that we know (the long hours

of unproductive coding, the struggles with learning, and so forth) with

the finished product of someone else. We don’t see their struggle in

getting things to work, or their countless hours making crappy pro-

totypes and unfinished projects before making the thing we admire.

Allow yourself to have a messy back-stage and do plenty of rehearsals

and understand that it takes effort and practice to put on a good per-

formance.

The lure of the post-mortem

There’s a tradition in some programming projects (especially in game

development projects where there is a clear end to the project when

the product ships) of doing a post-mortem on the project. What the

post-mortem does is allow the developers of a project to state what

Chapter 2 - Traveling Companions 15

went right and what didn’t go right. The better ones tend to be frank

accounts of the successes and failures of a project.

The post-mortem can be a fascinating look into the development of

a project. I’ve found myself reading a lot of these looking for insights

into the development process. But there’s a subtle trap in the post-

mortem: they’re a recollection of events from the vantage point of a

successful (or unsuccessful) project. They’re a recollection of someone

who worked on a project that was successful enough for you to spend

time reading about that project’s ups and downs. They’re written from

a perspective where the success of the project is a foregone conclusion

(or they’re written about projects that were noteworthy in how they

failed or didn’t meet the expectations of those involved). It can lead to

the belief that what you’re working on is not as important as the things

that other people are working on. But we don’t know the importance of

our project in real-time. Even the folks in the post-mortem didn’t know

if their project would work or be successful as they were working on it.

Our projects may never see the light of day, or theymight be something

that changes the world. We can’t know the value of what we’re working

on while we’re working on it (though we can have a sense of whether

or not we feel our work is important).

A post-mortem also has the benefit of hindsight. Decisions that

were clear and definite at the time might not make much sense when

viewed with data obtained later in the project’s lifespan. There’s

also an issue with “selective memory” where something might not

be remembered with the same clarity, or may be conflated with

other events. Confident statements like “We knew this one thing

wouldn’t have worked” might actually have been “We weren’t sure

16 The Mediocre Programmer

if this would work so we tried several things. They all didn’t work.”.

Consider anyone writing about their past as an unreliable narrator.

True, they may be the best and most knowledgeable narrator we have,

but they do not have an objective perspective on whatever they were

creating. They have their own biases and reasons for the stories they

present in a post-mortem. Treat a post-mortem like you would treat an

auto-biography of a famous person: a primary source with an agenda

to show the subject in the best way possible.

There’s nothing wrong with reading a post-mortem about a project

— we can learn a great deal about how a project is run (or shouldn’t be

run) and what pitfalls to be aware of if we go down a similar path, but

understand that you’re reading one account (whether by one person or

one team of people). They have the perspective of someone deep in the

conflict. You’re looking at their recollections of tactics, not the overall

strategy that brought that them to the place.

Ranking programmers

There are many metrics which folks use to rank programmers. You’ve

likely seen these metrics manifest themselves in different ways: com-

petition sites, numbers of commits to projects, productivity measure-

ments, time to turn-around code, and good ol’ fashioned gut feelings.

We do it to ourselves and others. We compare our work against the

work of our peers and folks that we admire, but that can lead us to

make comparisons that aren’t objective or based on all of the data. I can

compare myself against folks who do low-level programming and find

that I don’t measure up in that realm. Never mind that I haven’t done

a whole lot of low-level programming; the comparison is valid. Or, I

Chapter 2 - Traveling Companions 17

can compare myself against folks who were mentored by programmers

whose names are legendary in the field. I will find gaps between my

knowledge and their knowledge, because I didn’t have access to those

mentors (or worse: I didn’t take advantage of the mentors I could have

accessed. Whoops!). Comparisons like these are not helpful and lead us

into punishing ourselves for not being someone else. Our assessment

of our projects and history give us the conclusion that we’re not that

other person, nor could we ever be that other person.

Themajor problemwith ranking programmers (or ranking anything

for that matter) is that ranking systems are based on one set of criteria.

There is no real standard for ranking programmers. Sites that rank pro-

grammers based on numbers of problems solved or difficulty of prob-

lems solved have only determined that there are a set of programmers

who really enjoy solving these types of problems. They’ve also collected

a set of programmers who will spend the time and effort to solve these

problems and will be competitive while solving them. It tells us little

about the programmer’s abilities outside of that domain.

There are also other metrics to rank programmers. One classic met-

ric is reviewing how many lines of code a programmer used in order to

solve a problem (this is sometimes referred to as “code golf”, where the

fewer number of lines of code the better the solution). We can argue

how “clean” the solution is (clean being another nebulous term). We

can determine the “Big O notation”, a notation used to describe the per-

formance or complexity of the algorithms that a programmer used in

their code. We can stress test the code to determine how well the code

adapts to various circumstances. We can count the number of cycles a

particular piece of code takes in order to run and benchmark it against

18 The Mediocre Programmer

similar code. Very little of this tells us anything about a particular pro-

grammer. What it does tell us is that the programmer has experience

that lead them to that particular solution. It tells us that the program-

mer has seen these sorts of problems before and cared deeply enough

about the problem to think hard enough about how to make a better

solution. We learn that the programmer devoted time and energy to

practice these sorts of problems. What it doesn’t show us is an overall

measurement of the programmer’s skills or abilities. It’s similar to the

apocryphal tale of a brilliant professor. This professor was an absolute

genius in his field and was one of the go-to people for answers about

his subject, but despite his brilliance he was unable to understand how

to change a tire on a car. Does that mean the professor was not as bril-

liant as folks claimed him to be? Hardly. It means the professor spent

more time thinking about his profession than he spent thinking about

changing tires. The same is true for programmers. If a programmer

spends most of their time solving a particular set of problems they will

eventually become skilled at those sorts of problems. But if that pro-

grammer struggles with a different sort of problem it doesn’t discount

their overall skills; it just points out areas they might want to work on.

Measuring programmer output

There’s also a tendency to measure programmer productivity by how

many contributions the programmer can make to a project. Under cer-

tain version control systems these are called “commits”. They list out

a set of changes that the programmer wishes to make to the code. In

an era of social coding sites like Github and Gitlab we can easily review

what other programmers are committing. Since we can measure the

Chapter 2 - Traveling Companions 19

number of commits, we can use this measurement to feel that we’re

not generating the same number and frequency of commits as other

programmers. And unlike measurements of old (lines of code in partic-

ular, which measures how many lines of code a programmer adds to a

program) we can review the quality of their commits to a project. It can

be daunting to see a lot of quality work done by our peers. It can also

be source of frustration and feelings of inadequacy. “Why can’t I be as

productive or contribute as this other person?” we ask ourselves.

Even more frustrating is when others use these metrics to judge

productivity and code contributions. We may find ourselves being crit-

icized for our output (or lack thereof).

Commits and lines of code are themost visiblemeasurement of cod-

ing productivity, but they don’t show much about the actual practice

of programming. We can’t measure the amount of time thinking about

the problem just by looking at a commit. We don’t see the mounds of

reference material the programmer used in order to figure out a solu-

tion, and we certainly don’t know if this commit is the result of one

afternoon of work or many days of work (unless they commit more of-

ten). Wemight even find out that this person is acting as the focal point

of an organization and is folding the work of multiple folks into their

commits.

Measuring ourselves on the quantity of others output is easy and

seductive but it isn’t useful for figuring out how to improve ourselves

in relation to the other programmer (other than “generate more com-

mits”). That way of thinking can lead us to believing that we’re not

spending enough time doing “actual programming” and lead to over-

work, stress, and burn-out.

20 The Mediocre Programmer

Traveling Companions

There are times when it is useful to compare ourselves with other pro-

grammers. Sometimes we can learn about new technologies or new

methodologies by looking at the work of others, but it’s easy to fall

into the trap of thinking that because we’re not at the level of other

programmers we’re somehow inferior to them. Rather than looking

at other programmers as competition we should look at them as com-

panions. We’re all in this profession working to make our respective

projects better. With Free and Open Source Software we have a unique

opportunity to see how other folks do their work in public. We can learn

from the code of othersmuch in the sameway that scientists can look at

the papers of other scientists to see what worked (and can improve the

validity of the paper with replication and repetition). No coder is com-

pletely isolated from the work of others. (It’s a rare programmer that

has coded their entire programming environment from scratch without

the work of others). We all learn from each other, but rather than be

intimidated by the work of others we can instead take it apart and learn

from it. If we’re lucky we can take the opportunity to ask them how the

code works and why they chose to write the code in that way.

There’s value in asking questions of our fellow programmers. We

tend to overlook asking questions for fear that we’re going to ask some-

thing obvious or ask a question that will make us feel inadequate for

asking. Asking questions is very useful whenwe don’t understandwhat

is going on with an idea or a particular piece of code. There are pro-

grammers out there who don’t mind answering questions, andmy hope

is that you find them. Granted there are some programmers who are

very busy and might not have the time or inclination to answer ques-

Chapter 2 - Traveling Companions 21

tions, but if we are truly stuck and have exhausted all other avenues

perhaps we can ask questions of them that don’t require much of their

time and effort. They may even be grateful for the question because it

gives them insights into a perspective they might not otherwise have.

When we ask questions we initiate a sharing of ideas in both directions.

There is an art to asking questions and it can be frustrating when

folks don’t answer our questions or come back with other questions and

suggestions that are less than helpful. Thismanifests itself in exchanges

where person A asks: “I’d like to knowhow to do X” and persons B andC

respond “I would do Y instead”. It’s frustratingwhen folks won’t answer

our questions directly. It’s also easy to get embroiled in exchanges with

folks about the merits of doing Y where Y was suggested by someone

else that has nothing to do with the original question about X. But if

we re-frame the experience as “this person is trying to help me; perhaps

there is something in this recommendation that might be helpful” then

we can have a better conversation. Perhaps what we’re asking isn’t

the best way to do something and pausing to listen may help us better

understand why they suggested what they did.

Pulling our egos out of the question allows us to be more open to

the answers we receive. When people don’t understand our question it

becomes easy to take it personally and frame it as “they’re not under-

standing me” or “they’re not listening to me”. Pulling ourselves out of

the question allows us to accept the answer provided “as-is” and gives

us the ability to change the question as needed to get better answers.

Of course there are folks whowon’t respondwith your best interests

at heart and are only interested in imposing their own world-view upon

you. Instead of answering your question they question why you’re do-

22 The Mediocre Programmer

ing that at all and suggest that you should be using their methodology

instead. It can take a lot of energy to engage with these folks to tell

them “no, I really, really intended to learn more about X.” I wish I had

good answers for how to handle these folks. There are plenty of them

that feel that whatever they’re doing is the only right path and those

that stray from their chosen path are anathema to their world. My

best suggestion is to thank them for their time and ask someone else

for help. Perhaps they may be useful in the future when you have ques-

tions about whatever is part of their agenda, but for now be as kind as

possible and wish them well on their programming journey. Technol-

ogy spaces have a lot of folks who have been working with computers

for a long time and have formed strong opinions about their tools and

technologies. My hope is that you can find the ones that are also kind

and willing to share what they know and not badger you with their

strongly held beliefs. Over time you too will form your own beliefs on

what works and what doesn’t work and pass that knowledge on to oth-

ers. Recognizing folks who are there to help educate and those who are

there to proselytize is part of our growth process.

If we look at other programmers as our traveling companions on this

journey; as peers in our coding practice, then we can realize that we’re

all in this together. Even someone with many more years of experience

than you have is your peer. You have knowledge and experience they

won’t have, and they have experience and knowledge you don’t have.

If we strip away the barriers of perceived rank and meritocracy we can

better engage with and learn from each other.

The journey to becoming a better programmer is long and hard. We

need the best companions we can find to help us along the way. We

Chapter 2 - Traveling Companions 23

need more than just the technically-skilled companions; we also need

companions we can talk to when the day is done. We need companions

we can sit with around the proverbial campfire where we can laugh and

commiserate about our struggles together.

Chapter 3

The mistakes along the way

Whoops!

It’s bound to happen: something you thought was a good idea didn’t

work the way you planned, and now you realize you’ve made a terrible

error. Sometimes it’s something that could have been easily avoided

(committing code that was meant for debugging, for instance). Some-

times it’s a cascade of errors, each building on the efforts of the previ-

ous error. There’s the mistake of neglecting the side-effects of a module

when it’s used in a way that wasn’t intended, or it’s the realization that

you’ve designed a small, tightly coupled module only to learn that your

module will be part of a larger piece of software and your code isn’t

designed to make a smooth transition. Whoops!

The mistakes that really frighten me though are the ones that I did

not expect; the ones where the unintended consequences run rampant

throughout the system like a chain-reaction. Those mistakes keep me

up at night.

26 The Mediocre Programmer

Programmers make mistakes. The nature of our jobs require us to

be aware of what is going on in multiple sections of code. We lose track

of the state of our program and committed code. We try to pepper our

code with comments and reminders of what’s going on in a section of

code but comments become stale and add to our distraction. We rush

and rely on muscle memory to pick up the slack. We deny ourselves

areas where we can adequately test code because we feel we need to

rush to get things done quickly.

We panic, and when we panic we make mistakes.

Avoiding mistakes

Let’s be clear: there’s no way to avoid or eliminate mistakes. Software

is too complex to be completely bug-free. What we can do, though, is

create places where we can tease out as many bugs from the code as

possible before we set it in front of others. We can better understand

our code and what it’s doing when we have the ability to debug and test

our code in a safe environment. We can see how it will behave under

certain circumstances. Creating a model of the target system allows

us to test our code against miniaturized versions of the target system’s

reality and see how it behaves under those conditions.

We put a lot of emphasis on avoiding mistakes, both in program-

ming and in programming culture. There are horror stories of how small

bugs in a program caused enormous pain for those involved. The moral

of these stories is that simple mistakes can be costly and we need to be

doubly careful about avoidingmistakes. These anecdotes are told in the

hopes that they’ll somehow scare developers into being more cautious,

but they can have the opposite effect. They can make programmers

Chapter 3 - The mistakes along the way 27

paranoid about making any mistakes at all, and when we operate in a

fear-based mode we begin to panic. Telling programmers to not make

anymistakes is similar to telling someone to not be afraid: they become

more afraid of being afraid.

The best (and perhaps only) way we learn is by making mistakes.

Learning by making mistakes is an effective way to allow us to be cu-

rious and see what caused the program to fail. When we deprive our-

selves of the freedom to make mistakes we deprive ourselves of the

learning opportunities in making those mistakes. That doesn’t mean

we have to make every mistake that other developers have made be-

fore us (that would be a lot of mistakes). Nor does it mean that we

need to introduce chaos into our development process in order to learn

better. What it means is that we need to make our own mistakes in our

own way in order to keep learning and figuring out where the gaps in

our understanding exist.

Making a model

We need environments where programmers can safely learn from their

mistakes. We need spaces where programmers can feel good and con-

fident about trying new things. We need places where developers can

try out their ideas and not have those changes ripple out to other un-

related systems. This is the best way that developers can learn and be

brave in their learning process.

These environments must model the target systems, and they must

be as close as is practical to those target systems. That doesn’t mean

you need to make exact copies of expensive production environments,

but you do need to create models of production environments that

28 The Mediocre Programmer

test most of the pieces with which your code will come in contact.

Having models that mirror production systems means that when you

move your code to production you’ll introduce fewer changes with un-

intended consequences. Your changes will have already existed in a

production-like environment. You can take comfort in knowing that

the changes you enact in these models will be the same changes that

will appear on the target system.

Ideally you’ll need to have an environment like this on a machine

that you control. This means that you’re not competing with other

programmers in your organization who are also being brave with their

changes. You’ll also want to ensure that your environment is kept up-

to-date with their changes (and any production changes) so your de-

velopment model matches what’s on the target system and what will

be on the target system. A good model is one that is kept current with

what it is modeling. It’s the same as a map of a city: it’s best when

it matches the area its modeling and is kept current with changes that

occur in that city. A good map of the city might tell you about the re-

cent construction happening on your route. A useless map doesn’t even

show your route because it wasn’t built when the map was created. If

our model of production is constantly falling behind what’s in produc-

tion we will spend more time rectifying the changes that we’re making

with the changes between our model and production.

This alsomeans having an environment that you can rebuild quickly

and replicate as needed. Having a model that becomes its own separate

reality becomes one more system to maintain. This model should be

something that you can delete and rebuild at will in order to remove

any previous experiments. It’s best to think of it as an ephemeral copy

Chapter 3 - The mistakes along the way 29

of your target environment that has limited use and can be tossed when

no longer necessary. It should be quick to replicate this environment so

there’s little friction in creating new environments to play in. That can

mean scripting the building process for these environments. How you

decide to do this is up to you but keep in mind that you want something

that’s as simple as you can make it and requires as little thought as you

can manage to replicate it.

Again, it doesn’t have to be perfect - it’s only a model, but it does

need to be close enough so your code will behave in a similar fashion

between the model and the target environment.

Time machines

There are plenty of folks who will tell you the benefits of revision con-

trol (and many folks who will show you the exact steps for how to set

up a revision control system). Revision control systems such as git,

svn, cvs, and the like have helped programmers coordinate releases

and keep a log of what work was added to their project. Having a good

revision control system allows you to create areas where you can test

code without having to merge these tests into production code. Good

revision control lets you to create a space (or “branch” in git parlance)

based on existing code that you can use to experiment and develop. It

also allows you to commit in that space and diverge as much as you

want or need to in order to fully explore the changes you’re making.

What’s most important though is that good revision control will also

allow you to abandon that space if you need to – you’re not forced to

add those changes back to your production code. This allows you to

see if something might work and abandon those changes if they don’t.

30 The Mediocre Programmer

Good revision control affords programmers the ability to branch off

from any point in time and explore what happened in the code base.

In a sense they’re time machines and infinite universes, allowing you

to play “what if?” scenarios with your code and move back and forward

through time in your code. This is vital for your learning because you

can feel secure in testing and trying things and rewinding those changes

(or deleting them entirely) without affecting the work of others.

Learning how your revision control system works will give you free-

dom to make mistakes. Many of these systems can seem complex at

first, but with continued practice and patience you’ll understand what

the revision control system is doing and what its capabilities are. You’ll

be able to judge how many risks you can take with your code and be

more confident with the risks you take.

Revision control can also play a role in seeing the development of

the code of other folks. You can get a window into their development

process and see what certain features look like as they are added. This

can help you learn about an unfamiliar code base and show you the

direction they took in order to make the code the way that it is. It can

give you a window into the history of a project and what went into

making it happen. Revision control can be a time machine into the

history of a project and can help you understand that programming is

a process. Not all projects come fully-formed from programmer minds.

Learning from failure

Sometimes we fail. Sometimes the code wewrite isn’t up to the realities

of the system it’s implemented on. We push code that does something

unexpected and systems break as a result. We can lose track of where

Chapter 3 - The mistakes along the way 31

we are in our code and make changes that conflict with other changes

which then causes us to spend time undoing those changes. All of these

cases cause discomfort, whether to us, the folks we support, or the folks

we work with.

I’m not going to lie: failure sucks. It makes us feel like we’re less of

a person because we failed. We feel inadequate and wonder how others

think of us. Do they think less of us? Havewe damaged our relationship

with thosewho usewhatever we’ve programmed? Havewe let our team

down? All of these questions stem from two desires: the desire to do

our best and the desire to do no harm to others. We want others to

think well of us and our skills. Failure runs counter to those desires

and amplifies whatever feelings of inadequacy we might have. Those

feelings can include wondering if we should be programming at all or

wondering if our talents should be used elsewhere. We wonder if we

should just give up.

We don’t usually think of failure as part of the learning process.

Failure is often seen as the end-point of the journey. In school a failing

grade is viewed as a condemnation. We don’t view it as “I need to prac-

tice this some more”; instead we feel that we have caused shame and

discomfort to ourselves and our loved ones. We do ourselves a grave

disservice if we don’t realize that failure is a natural part of the learn-

ing process and that it’s OK to fail. Not everything we do will be per-

fect. Mistakes will creep into the best code we write. We will slip up

and deploy to the wrong system. Our mistakes will cause discomfort

to others. Accepting this gives us the freedom to realize that despite

our best efforts we will not be perfect. Instead of viewing failure as a

limitation we can use it as part of our growth process.

32 The Mediocre Programmer

When we realize we are going to make mistakes we can change

our approach in how and where we make them. I mentioned before

about creating models of our environments. What better way to allow

us to make mistakes than in an environment where those mistakes can

be contained and rolled back? Creating models allows us to practice

and test our assumptions in environments that nobody else has to see.

It’s akin to a practice space for musicians where they can run through

their material without the need to perform it right the first time. They

can work out the troublesome parts and make mistakes until they are

confident in their performance.

Mistakes are how we learn what works and what doesn’t work.

They are an integral part of our learning process. We tend to remem-

ber the lessons of what didn’t work better than the ones that did work.

Mistakes help us shore up where we lack knowledge and help us un-

derstand the gaps we’ve yet to close.

Mistakes also act as a reminder to pause for a moment and not get

too wound up in the urgency of things. My own mistakes tend to crop

up when I’m rushing to meet a deadline (whether real or self-imposed).

Myworst mistakes happenwhen I’m tired and rushed, when I’m practi-

cally flailing at the keyboard trying to get something (anything!) work-

ing. When I allow myself to pause for a moment, reflect on what I’m

trying to do, and feel the uncertainty in the moment I can take steps

to recalibrate and refocus in the moment. I give myself the freedom

to course-correct and understand that I’m not doing my best and need

to do something different. It might be something small like giving my

brain a bit of rest or something large like revisiting the assumptions I

made about what I’m doing. Taking the pause lets me determine if I

Chapter 3 - The mistakes along the way 33

want to continue doing what I’m doing and understand if that’s the

best path.

Journaling our mistakes

There’s value in not making the same mistakes twice, but when we do

repeat the same mistake can still be useful. Knowing that we’ve re-

peated the same failure is useful because it gives us a pattern we can

understand. Those patterns show us that doing this particular thing

leads to a repeatable failing result. We can then determine what caused

the mistake and plan for how to mitigate it. This is part of the learning

process, as long as we don’t fall into a spiral of self-recrimination when

we realize that we’ve made the same mistake again.

One trick that I should use more often is journaling. Keeping a

journal of what happened and how we fixed it is one way to explain to

someone else (often ourselves) about what happened. Explaining what

happened allows us to become a teacher to ourselves and others. It

reinforces our learning process. Writing down what happened in a way

that others can understand allows us to arrange the thoughts in our

head in a way that is clear and understandable. When we articulate

our own thoughts about what happened and codify them, we start to

understand our own thoughts and can shake loose other ideas about

how to fix this and other problems. We give ourselves the pausewe need

to fully understand what happened and how best to move forward. We

become our own sounding-board for ideas on how best to proceed.

This isn’t about keeping a record for posterity sowe can look back at

a list of failures and beat ourselves up about the past (if you’re anything

like me that happens automatically). It’s a way to teach ourselves and

34 The Mediocre Programmer

maximize the learning process. It’s about giving ourselves the freedom

to be the instructor to our future selves so we can be more aware when

a mistake is about to happen and understand how to correct for it. This

allows us to focus on the moment just long enough to understand what

happened, what we did to correct it, and how we can best proceed from

here. It also helps us to locate where our gaps are and the “next actions”

that we’ll need to take in order to fill in those gaps.

We’ll talk more about journaling in later chapters but I fully recom-

mend a journal habit if for no other reason than it gives you a willing

apprentice to teach, even if that apprentice is only yourself.

Chapter 4

The inns we stayed at

Fellow travelers

Whenever we think of programmers we tend to think of someone sitting

in front of a computer entering code; the glow of the monitor reflecting

off of their face. Usually the programmer is alone (though there are

methodologies that utilize more than one programmer at a time, “pair-

programming” for instance). During those coding sessions there isn’t a

lot of contact with other programmers and it can feel isolating being in

the company of yourself. Granted this can be a good feeling (there are

times when I really enjoy being alone at the computer, fully engaged

and focused), but there are other times when we need to feel like we’re

not alone. This is especially true when we’re learning and pushing our-

selves into uncomfortable territory. Finding others in similar situations

can help us with our learning process. Others can help us by fielding

our questions and reviewing our progress. Finding a good community

that is supportive in our learning is essential on our programming jour-

36 The Mediocre Programmer

ney. When we have a good community we have a place where we can

learn and help others learn. We can grow in the community and find

support.

A good community is one that strengthens us and those around us.

It nurtures us and provides us shelter. It is a safe place where we don’t

have to keep our guard up from attacks on ourselves and others. It holds

people accountable to each other. We can trust the members of the

community and feel that trust is reciprocated. Good communities exist

without competition and ego, where members can express themselves

openly and accept others as they are.

Finding a good community

There are a lot of good communities out there that are willing to help

you become a better programmer, but how do you find them?

That’s a tricky question.

Most programming languages have some form of community cen-

tered around them. Some have mailing lists or other communication

channels that you can join and participate in. Unfortunately, most pop-

ular languages have spaces that are difficult to follow, especially when

you’re trying to learn. I know I have joined the main channel for a

popular language only to be overrun with multiple conversations hap-

pening at once. Mailing lists designed to support beginners can have

major amounts of traffic, and that traffic can be overwhelming when

you’re trying to understand the basics of the language while trying to

keep up with the deluge of mail in your inbox. Reading the archives of

the mailing list or chat can help determine if you’re ready for that level

of traffic and if the conversations on the list are the types of conver-

Chapter 4 - The inns we stayed at 37

sations you enjoy. Remember: this is to help you along your journey.

Throwing yourself into a crowded room only to be inundated by the

amount of conversations and cacophony will only make you feel more

isolated and unwelcome.

Some programming languages have local user groups. Those can

seem intimidating at first, especially if the group has been around for

a long while. I know I was intimidated before I went to my first user

group for fear of what I might find inside. What I found was a group

of folks who were interested in the topics that I was interested in. I’ve

made lasting friendships through users groups and I encourage you to

see if they might work for you.

If you’re at a loss for finding the right group (perhaps you’re in an

area where you feel you’re the only person who shares your interests)

youmight consider starting your own or branch off of an existing group.

My friend Rick and I started a local branch of a group called Coffee

House Coders where coders meet once a week for a few hours to sit and

code. All we did was post the times and places that we were meeting

and told folks to just show up with a laptop to code. We’ve met some

amazing folks along the way, and we’ve kept the group going for many

years. Starting a group is an act of courage. There have been many

evenings where I’ve sat alone in a coffee shop waiting to see if others

would show up. That’s fine. People get busy and interests fade over

time. What is important is creating the space for ourselves and others

to feel welcome. For us that meant finding a local coffee shop that was

open late at night and had ample space for setting down a laptop. It

also helps to find a place that has electrical power so folks can charge

their batteries if necessary.

38 The Mediocre Programmer

There are many ways to be creative with starting a community. The

advent of online tools allows you to build communities with folks across

the globe. Bringing these folks together to talk and discuss ideas and

offer help is amazing when it happens. Sometimes it can be as simple

as creating a chat room around a common interest. Explore what’s out

there, and if it doesn’t meet your needs feel free to create your own.

The difficulty in finding a good community

I recognize that not everyone can join or build a community. Online

spaces have a reputation for not being welcoming places for folks, and

in-person group meetings can use up whatever mental resources you

have. It took me a long time to find the courage to go to my first in-

personmeeting as I’d had a bad experience with someone I workedwith

that I thought would be at these meetings. (I’m not sure if that person

ever went to those meetings). But I’m grateful that I did eventually at-

tendmy first meetings. Attending thesemeetings ledme to friendships,

opportunities, and other “traveling companions” for my journey. It led

me to switch to one of my favorite programming languages (Python)

and led me to several jobs. It also helped me to feel like I wasn’t alone

with my interests and introduced me to others I could rely on. It gave

me a feeling of belonging.

Getting over the initial hurdle is hard. Our fear of rejection and

our fear of making ourselves vulnerable to strangers can wear us down.

Overcoming that fear takes a lot of our mental energy and can sap us

of the desire to be part of yet-another-community. I can’t say that it

will be easy, but I can point to some of the benefits it had in my life. I

hope you can find those benefits as well.

Chapter 4 - The inns we stayed at 39

An alternative to in-person communities are online communities.

Online communities can be a great way to find others. They gather

folks from many different locations and bring them to a common area.

Part of the reason I made my jump into meeting folks in person was

because of the good experiences I had with these folks on IRC (Internet

Relay Chat). I enjoyed the company of these folks through our online

interactions and felt comfortable meeting them in person.

The low barrier to entry for many online communities can allow us

to see what the community is about. What are their priorities? Are they

kind to folks who are starting out? Do they have a pattern of helping

folks like us or do they tend to hurt folks like us? Do they havemembers

who nurture their fellowmembers or are they cutting each other down?

I’m not aware of a good strategy for determining if a community

is helpful or hurtful. It takes some effort to follow a community and

get a sense of who they are. It is emotionally draining to put ourselves

in situations where we are vulnerable in order to see if others will be

gentle with us. Communities are made up of people and people are

fickle and irrational creatures. What might be an amazing community

for one person may be a toxic environment for another. While I don’t

have a strategy I do have some ideas on key elements that make up a

community.

Things to look for in a good community

There are a number of things that I would look for in a community.

While this is not a definitive list of everything that makes up a good

community it lists some guidelines for what I think is important:

40 The Mediocre Programmer

• Code of conduct: Good communities have guidelines for things

that the community will accept, tolerate, and abhor. It should be

visible to all members of the community, and each member of the

community must be accountable to those guidelines. It must also

be enforced. If you note situations where the code of conduct is

selectively enforced against certain members you should be wary

of staying within that community.

• Moderators: There needs to be someone (or a group) in the

community that can diffuse situations and meter out meaningful

punishments when folks get out of hand. Moderators should be

even-handed and as consistent as possible with their decisions.

They should demonstrate that they are also following the same

code of conduct by their actions in the community. A good mod-

erator should be visible but not overbearing. You should feel wel-

comed by the presence of a moderator and feel free to engage the

moderators if you have questions about the community.

• Spaces for questions and guidelines for good questions:

There should be a place for folks to ask questions related to

the topic of the community. People should feel safe in asking

on-topic questions, and the community needs to be clear on what

it considers an on-topic or good question. Is the space OK for

beginner questions? If not, could such a space be made? What

sorts of questions would the community be happy to answer

and what sorts of questions would upset the community? These

need to be clearly defined so beginners can have a sense of what

the community will welcome and what it will not tolerate.

• Joy: Do the people in the community seem pleased to discuss

Chapter 4 - The inns we stayed at 41

things? What is the tone of the conversations? Are folks inter-

acting in a positive way with each other or are they resorting to

insults and name-calling? Are questions welcomed or are they

discouraged or ignored? If there’s no joy in being in the commu-

nity then the likelihood of folks sticking with it will be lowered.

• Compassion and empathy: Does the community allow for peo-

ple to make mistakes? When something goes wrong does the

community try to help? Does the community remember what

it was like to be beginners and act with compassion, or do they

expect everyone to have more experience before participating?

• Kindness: This is the most important factor — does the commu-

nity behave in a kindmanner to others or do they split off into fac-

tions and try to cut each other down. Do they view new folks as

friends or as outsiders that must prove themselves? This relates

to compassion and empathy above, but we tend to see acts of

kindness before we see compassion and empathy. Kindness man-

ifests itself when community members are OK with folks not get-

ting everything right away and act with gentleness rather than

taking a stern approach. They let folks know that they too have

had trouble and suggest ways to work together to smooth things

out for the next folks who might experience this same trouble.

They act in a way that does not put their ego first, and instead

behave as though they have been given a gift that is best shared

with others.

We’ll talk more about kindness in upcoming chapters.

These are just a sample of what I find in good communities. Feel

42 The Mediocre Programmer

free to add to this list as your experience grows and let me know so I

can update this list for future readers.

Chapter 5

A day’s journey

Riding until dawn

As programmers we are always trying to find new ways to be produc-

tive. Tweaks to text editors, compilation tweaks, scripts and automa-

tion; the list goes on for how programmers want to maximize their pro-

ductive coding time. We also spend time tweaking the rest of our lives

with the belief that we should always be doing something related to

coding. Any moment we’re not coding is a moment where our projects

get behind. And getting behind with our coding can lead to other prob-

lems: missed deadlines, other companies getting their program to mar-

ket before us, or other instances where we miss an opportunity. We’re

constantly worrying that we’re not doing enough to succeed.

We’ve heard stories of developers waking up at their computers to

the strange sound of beeping because they fell asleep at the keyboard

and the keyboard’s auto repeat can’t handle any more input with their

faces resting on the keys. Isn’t that how developers should work?

44 The Mediocre Programmer

There’s a tendency to believe that because we work with machines

that are tireless and ready for more work that we need to adapt our-

selves to these machines. We feel the urge to always be “on” and ready

to give the machine more work. Idleness is regarded as a waste. We try

to become like the machine; tireless and always ready for more work.

There’s a problem with always being “on.” When we feel like we

always have to be “on” we never let ourselves feel like we can be “off.”

We don’t allow ourselves any periods of idleness and rest. This creates a

patternwhere we deny ourselves themoments to sit and reflect onwhat

we’re doing. We force ourselves to keep moving; keep programming no

matter the personal cost. Our brains don’t get the ability to rest, relax,

and recharge. Our minds are too busy and exhausted to process what

we’ve learned and sweep that knowledge into long-term storage. When

we get exhausted we start to worry that we’re not doing enough. This

doesn’t motivate us; instead it creates a vicious feedback loop of fear

and panic. We spend our day worrying that we’re not doing enough

while our minds cry out “enough!” from exhaustion. This feedback loop

of fear and exhaustion can spiral us into a vortex of burnout, depression,

and a desire to leave programming for good.

There’s a delicate balance that we need to strike between our de-

sires of being on all the time and our needs for relaxation and reflec-

tion. Our desire for invincible and indefatigable development needs

to be tempered with the reality that our bodies and minds have finite

resources per day that must be allocated appropriately. Think of this

as power-management for a complex machine that the manufacturer

(currently) doesn’t allow you to swap out the battery when it is spent.

Being aware of what processes are running, how much energy is being

Chapter 5 - A day’s journey 45

used, and how much energy is left is vital for ensuring you can still be

functional later on in the day. That’s the level of awareness we need to

have about ourselves.

How do we balance these feelings of wanting to be on all the time

while allowing ourselves to relax and reflect on what we’re doing? How

do we pay attention to the needs of this “programming machine”?

Lights out

First, we need to acknowledge that we can’t be on all the time. We may

know this intuitively and think “yes, of course” but knowing is not the

same as doing. We need to have periods where we are not program-

ming and not thinking about programming. We should have moments

where we can turn off the programmer part of our being. These peri-

ods of not-programming are vital to our well-being and give us chances

to explore the wider world and let our minds rest in-between program-

ming sessions.

This can be tricky if we feel like we’re falling behind in our learning.

When are we supposed to learn all of the new things happening daily?

When are we supposed to catch up on all of that technical debt we’ve

been accruing over the years? When will we have time to learn the ins-

and-outs of technologies that aren’t part of our day-to-day work but

are still interesting to us?

These feelings that we have (that there’s more to do, and that we

need to spend every waking moment doing it lest we fall behind) aren’t

helped when we compare ourselves to other programmers who appear

super productive. These are the programmers who think of a clever

idea in the morning and have a working prototype in the afternoon

46 The Mediocre Programmer

(while still handling normal work routine). Whenwe compare ourselves

against these programmers we wonder if they ever take time away from

the computer.

We can acknowledge that we have feelings of wanting to push our-

selves to keep learning and doing. We can notice our feelings when we

think “just one more line of code before bed” or convince ourselves “I

can read a fewmore articles or pages or [insert favorite way to consume

more information here]”. We can pause and notice where these feelings

and thoughts come from and understand why we’re still pushing our-

selves beyond exhaustion.

These feelings usually stem from a sense of inadequacy. We feel like

we’re not measuring up to the ideals we have; whether these ideals are

ones we’ve created or ones that are externally driven. These ideals come

from analyzing other programmers (colleagues or folks we admire), and

measuring our progress against their work. They also come from our

own mythical ideas of what makes a perfect programmer.

What we need to realize is that those ideas of what makes good

and perfect programmers are fantasies. They’re a composite of what

we think a good and perfect programmer should be. They don’t exist in

the real world. True, we may see programmers out there that seem to

wake up with a keyboard attached to their hands, spend the entire day

coding, and go to sleep with dreams of more code formulating in their

heads. But we need to realize that we’re only seeing one side of their

lives. We’re not seeing the whole picture of who they are. We need to

focus on our own bodies and minds and realize when we are tired and

need rest. We can’t make ourselves into other people; we need to work

with who and what we are.

Chapter 5 - A day’s journey 47

Our bodies require down-time in order to be most effective. We

need moments where we can step away from the keyboard and al-

low ourselves to wind down and relax. Our minds are not designed

for constant work, especially at the levels that computer programming

requires. The sooner we realize we should step back and take breaks

throughout the day to recharge ourselves the happier (and more pro-

ductive) we will be.

Taking a break

Taking a break is more than just flipping over to another application on

our computer. My tendency while taking a break is to start checking

my email or open up one of my various chat programs to catch up on

what happened since I last opened it (usually since the last time I took a

break). This really isn’t taking a break as it is trying to multi-task at my

desk. Real breaks involve getting up from the computer. It doesn’t have

to be a large break; taking a break can be as simple as moving away

from your work-space into another room or area. You need to move

away from your computer to get a “Context Switch”, where your mind

can feel like it isn’t in the same place as it was earlier. Context Switching

lets your mind completely switch out and flush out the context of the

area you’re in. It allows your mind to focus on new context and new

input.

This can be tricky in an office where the underlying expectation is

that one must be at their work space in order to be productive. And

there are only so many “bio breaks” (breaks that are related to matters

of human biology, also known as using the restroom) someone can take

48 The Mediocre Programmer

in such situations. How can you give yourself the context switch your

mind needs in such situations?

You might be able to achieve the same sort of Context Switch by

looking away from the computer display for a fewmoments. It’s a good

idea to look away from the screen every now-and-again to give your

eyes a rest. Giving your mind a rest while you give your eyes a rest can

give you the incentive to do both.

Changing your sitting / standing arrangement can also be a good

Context Switch where you allow yourself a change in your physical

workspace. It can be as simple as just standing up and stretching from

time to time, or as complex as raising or lowering your standing desk.

Telling yourself that there are two contexts around your desk: sitting

and standing at the desk, may be enough to give yourself the Context

Switch and rest that your mind needs.

If your workplace has a culture that allows you to step away from

your desk and move around then that would be a great Context Switch.

Adding a physical component (as much as you are able) to your Context

Switch can help your mind to relax and recharge.

You’ll have to experiment with a few of these to determine what

works. At the bare minimum you’ll want your mind to feel as though

it doesn’t have to be on all the time. You want your mind to have cool-

down periods between coding sessions so it can flush the remnants of

that session from your mental “cache” and into longer-term storage.

Then when you get back to your coding session you’ll be more likely to

remember what was going on.

You may also find when you go away from the computer for a while

that you’ll forget what you were previously doing. That’s OK. What I

Chapter 5 - A day’s journey 49

would recommend is keeping a journal or log of what youwere thinking

in as much detail as you need. Either write it on a physical piece of

paper or use a text file to keep these notes so you’ll have enough clues

to allow you to pick up where you left off.

Productive thinking

Next, we need to realize that productivity is not a constant. There are

days where we will find ourselves generating remarkable levels of code

and code quality and days where we’ll be lucky if we can string together

a coherent string of words for a code comment. We have varying levels

of energy and mental focus available to us per day. It’s up to us to be

mindful of these levels and understand what our productivity might

look like for the day.

Understanding these swings of productivity can allow us to better

gauge whether or not the day will allow us to generate the code that

needs to be generated, but there’s a level below that I think is important.

We put a lot of emphasis in our day on completion and hitting dead-

lines. This emphasis can cause us to create strong attachments to com-

pletion and deadlines. Sometimes this is warranted because of external

factors (the “critical-path” of the project require us to get this done by

a certain date and time). But many of our deadlines are internal dead-

lines that we’ve set for ourselves. We set a goal that we will be this

productive by the end of the day. The unstated condition of this in-

ternal productivity deadline is that we’ll feel guilty and ashamed if we

miss the goal. We’ll feel like we’re not measuring up to our expectations

and wonder if we’re worthy of the task at hand. We’ll feel like our day

has been wasted and wonder if we’re capable of doing anything at all.

50 The Mediocre Programmer

It’s better for us to remove deadlines wherever possible. We won’t

be able to get rid of the external ones where folks are waiting on our

contributions (though it may be possible to renegotiate those if they’re

not hard deadlines) but we can let go of the desire to meet arbitrary

productivity levels and arbitrary deadlines.

Arbitrary goals may work for some tasks. Some examples of this

are game programming contests that only run for a week which makes

teams focus on the critical pieces of the design and implementation of

their game in order to release it in the allotted time. These can be a fun

exercise for focusing your efforts, but they also incur a lot of stress and

pressure before the contest’s deadline. If you continually feel guilty and

unworthy because you can’t seem to meet the goals you set for yourself

then you should reconsider whether it’s useful to use them at all.

One trick that has helped me is creating small spaces of concen-

trated focus. That trick is described in the next section.

Containers

We should replace soft deadlines (deadlines that aren’t externally im-

posed on us) with a commitment to work on a particular project for a

given length of time. One trick I’ve found useful is the idea of a “timed

focus container”. When I do a timed focus container I start by choosing

what will be focused on during the container. Once the task is chosen

I set a timer at my work-space and then focus on that task with my

full attention for the remainder of the time on the timer. I’ve had the

best luck with using 10 minutes but a session as small as 5 minutes or

as large as 30 minutes can be useful. The work selected at the begin-

ning of the container is the only thing I work on, and I do my best to

Chapter 5 - A day’s journey 51

make sure there are no interruptions (whether internal or external) un-

til the container is complete. When the work is done I wrap up the task

with whatever I’ve completed, note whatever the next actions are for

that task on my next actions list, and then take a quick break (usually

around 5 minutes) before starting the next container. The next con-

tainer can be a continuation of the same task, or I can select another

task, but the idea is simple: I only focus on the task in front of me for

the allotted time. When my mind tries to wander or I get the tempta-

tion to “just check this one thing” I pause for a moment and determine

if it is indeed important. Most of the time it isn’t important and I can

make a quick note to check on it whenever I finish the container.

We can use these containers to overcome our desires to multitask.

We only focus on one thing at a time. We can also use containers to just

let the session go where it wants to take us. When we start the con-

tainer we don’t start off with trying to finish a particular task; instead

we see where the session takes us. There is no judgment of the quality

of the work in the container, just the expectation that we will work for

the duration of the container. There’s no expectation for what work

we will accomplish, just that we will work on it until the container is

finished. If we complete the task before the container ends then that’s

awesome! We can then figure out what the task for the next container

will be. If the container ends and we’re still in the middle of a task we

can then write down where we left off and what steps we took in order

to get there. We can then work on something else, or we can take a

quick break and then come back to the work with a focus container.

The underlying concept of the timed focus container is to let our-

selves agree to work within the confines of the container without judg-

52 The Mediocre Programmer

ment either for the work done or the progress made. When the work is

done we close out the container by reflecting on what we did and where

we need to go. We give ourselves permission to not worry about our

progress in the moment, but we do allow ourselves moments where we

can review our progress and note how far our journey has progressed.

We allow ourselves the freedom to just work in the moment without

fear of judgment, reprisal, or self-recrimination. The container is a gift

of uninterrupted work that we give ourselves (or at least as uninter-

rupted as we can manage). We make this the best gift we can give by

closing out other programs, turning off notifications, and giving this

task the full attention it deserves.

I invite you to incorporate this practice of doing focused containers

every day. I think they are an excellent way to give ourselves permission

to focus on one thing at a time without the need or worry for what will

get accomplished during that container. It allows us to focus on one

thing at a time and do it to the best of our abilities. The limitation of

working on one thing at a time without thinking about the other bits

of work that we have to do can be liberating, and I hope that working

with these containers will give you a sense of what fully-focused work

can feel like.

This whole book was created and edited using focus containers. I

took about 10 minutes per container to write the initial draft, and later

I used 10 minute containers to edit the book. Sometimes they bled over

into 15 or 20 minute containers but that was because I was so engaged

with the material that I didn’t want to stop. This was in sharp contrast

with how I’ve normally approached tasks. Usually I need to get over the

initial hurdle of allocating a half-hour or more to the task. This means

Chapter 5 - A day’s journey 53

that I need to feel like I have enough control over my schedule in order

to clear out that space. Since I don’t tend to feel like I have that level

of control over my schedule I tend to procrastinate on the task. With a

focus container I think to myself “I can just take 10 minutes to work on

this” which is just enough time for my mind to not feel like it should be

doing something else. With each container I gradually saw the progress

of this book unfold. That then fed back into my desire to keep working

on this book, which helped lower the mental friction to keep doing the

containers to work on the book. It created a positive feedback-loop

where I looked forward to the next time I could do the container and

work on the book.

Distractions

Life is full of distractions. Somany things want our attention, andmany

of these distractions are outside of our control. Someone enters our

work-space and needs our attention at that moment. An email thread

that we thought was settled becomes a heated discussion and our at-

tention is drawn to it. Something happens at home and now our minds

are split between worrying about our work tasks and worrying about

what’s happening at home. Whatever the causemay be, there are times

when our attention isn’t where we want it to be and we feel pulled in

every direction at once.

This is when the containers are most helpful. If something inter-

rupts the container we can determine if it’s more important than the

work we’re doing. If we determine that it is more important than what

we’re currently doing we can stop the container with the understand-

ing that we’ll return to the work once we’ve handled the interruption.

54 The Mediocre Programmer

If the interruption is not more important then we can agree (both with

whomever is interrupting us, or with ourselves) that our focus needs to

be here with the work until the container ends. We’ll be able to give

that disruption our full attention once the container ends. We won’t

try to split our attention between the work and the interruption, rather

we’ll give each of them our full attention at the appropriate time.

This method creates a simple delineation between our work and the

rest of the world, but just because it’s simple doesn’t mean it’s easy.

Keeping the delineation between our work and the outside world can

be challenging, especially if the culture you’re in is about immediate

results.

I don’t have good answers if the culture you’re in demands your

attention at all times. The best I can offer is a containerized approach

that gives you at least some periods of undisturbed concentration. If

you feel on-guard all the time because something might happen at any

moment then you’re going to remain less effective than if you can shut

the world off for a bit. I’d also challenge you to examine whether that

perception is really true; are you constantly being ambushed by inter-

ruptions? Testing that theory may be in order. Keep a log (whether

it’s a sheet of paper, text file, spreadsheet, or database is up to you) of

when you did a focus container and if that container was interrupted

or not. If you find that you are getting interrupted more often than not

then you need to determine what is causing the interruption and assess

if it’s something that you can control. There are many ways to handle

and minimize workplace distractions that I won’t go into here, but be-

ing aware of the distractions and determining where they are coming

from will be key to figuring out how to mitigate them in the future.

Chapter 5 - A day’s journey 55

Also be aware of the self-imposed distractions you’ve added to your

life. Do you need immediate notification that someone liked something

you shared? Is the funny anecdote you just remembered important

enough to warrant switching out of your current context so you can

post it to your friends and colleagues? Do you really need something

to pop up in your field of view to let you know that your music player

changed a track? Are you willing to sacrifice your attention and flow

throughout the day because a program detected a change in your en-

vironment, regardless of the importance of that change?

We add these distractions into our lives because we worry that we

might miss something important. Programs also come configured with

most of their notifications turned on so a user can be reminded of the

status of the program at all times. Perhaps it’s useful, but for me they

are very distracting. In my career I’ve sat at the desks of many other

folks and have cringed at the number of notifications they receive in

the short period I was there (a span of ten minutes or less). I’ve seen

folks interrupt their current line of thinking because a notification for a

message unrelated to the current task distracted them. What happened

to the original thought? They had to mentally switch back to it and

remember where they left off, usually at great mental effort.

I challenge you to turn off as many notifications as you can and

get a taste of what your experience is like without them. That may be

as simple as closing out an application when you’re done with it, or

may be as complex as changing the settings so an application doesn’t

notify you when new messages arrive. You’ll need to play with this and

see what works best for your needs and concentration. A good rule of

thumb is “what does this thing track that is important enough for me

56 The Mediocre Programmer

to drop my important work and focus on this thing?.” If you can scale

your notifications so that only themost time-critical notifications reach

you at the appropriate time then you’ll be better able to relax and focus

into your work. You won’t have to parse the notifications to determine

if what you’re seeing is important or not.

One of the reasons I’ve heard for folks keeping their notifications on

is that they feel they might receive something that requires an imme-

diate response. We’ve created cultures where we feel a need to respond

to messages the moment we receive them. I’d argue that most of the

messages you receive during the day don’t require the attention you’re

giving them, and certainly not the level of attention that warrants in-

terrupting what you’re doing to view and respond to them. You may

be better served by scheduling several periods of the day where you

do nothing but check and respond to your messages. Schedule these

as infrequently as you can. Some folks recommend two or three times

a day, but even setting a limit where you check your messages once

an hour can make a vast improvement over how many times you’re

already checking your messages. You’ll need to judge how often you

check your messages based on your needs and your work culture. Also

consider the person to whom you’re responding. Does it make sense to

give this person a quick, semi-thought-out response, or does this mes-

sage require more time to simmer in your mind before you respond?

Giving yourself time to think about a your response may give you ad-

ditional insights into a problem that might not be readily apparent in

the moment. This could mean the difference between one well thought

out response versus a deluge of half-thought-out back-and-forth brain-

storming via your messaging application. Responding to everything as

Chapter 5 - A day’s journey 57

it’s received is very stressful and requires huge amounts of attention

that could be better used in your programming work.

It may seem challenging and foreign to live without notifications

and without the need to respond to every message and notification, but

our attention is finite and limited. Maintaining focus throughout the

day is challenging and stressful. If we can limit the number of distrac-

tions we receive throughout the day we then give ourselves the freedom

to not have to work as hard to keep our attention attuned to our pro-

gramming tasks. We get to say “not right now” to our distractions and

handle them at a more appropriate time.

Chapter 6

The map is not the territory

The changing landscape of programming

The one constant in the field of programming is that it is always in

flux. Programming languages come into prominence and then fade

away over time. What once was a given is now considered obsolete

(or even “considered harmful”, as many essays will point out).

When I graduated from college we learned Pascal, Modula2 and

Ada. Unfortunately those languages were starting to decline in popu-

larity in favor of C.When I started my first “professional” programming

position Perl was the language of choice (partially because Perl could

be easily transformed into the ubiquitous CGI scripts of the era, and

was considered superior to scripting tools likeawk and traditional shell

scripts). As of this writing I’m using Python as my main development

language, and I foresee that I’ll have to look into other languages to

expand my programming career.

Programming requires flexibility. It’s difficult to learn only one way

60 The Mediocre Programmer

of doing things and have that remain relevant for over 20 years. Think

back to what was current technology 20 years ago and you’ll no doubt

notice that things are quite different now. If you would like a fun exer-

cise, search for articles describing the state-of-the-art technology from

20 years ago and notice how much of it you recognize.

Learning to learn

Learning specific methodologies and technologies is not a good long-

term strategy for programmers. We’re better served by learning how

to learn, and more importantly, how we ourselves learn. That sounds

simple: once we’ve cracked how to learn effectively then we’ll be effec-

tive programmers. Unfortunately there isn’t a foolproof way to learn

that works for all people. Different folks learn in different ways. All of

us have learning styles that work better when certain things are em-

phasized. Some learn better in a classroom while others learn best with

self-directed study (books, video recordings, etc.). Some can read a book

and be perfectly finewith understanding thematerial, while othersmay

need more visual approaches. If you have the luxury of trying several

different methodologies for learning I’d encourage you to use as many

as you can to figure out what works best for you. Understanding what

works for you will be key to helping you progress and grow.

I’ve found that some simple principles work best for me. The first is

repetition. I learn better when I do something daily, over and over again,

in small chunks. The second is having a small goal that I can achieve.

So for me having a daily practice time on a project where I can work

toward an end goal works best. When I was learning Python I enrolled

in PyWeek, a one week game programming sprint where the theme is

Chapter 6 - The map is not the territory 61

announced near the beginning and all programming happens during

the week. For that entire week I made time to complete my game, and

by the end of the week I’d learned more about Pygame (the library I

used for my game) and Python than I had in the weeks leading up to

PyWeek. Doing a one-week “game jam” (as they’re currently called) is a

bit extreme, but it gaveme a clear goal (a completed, working game) and

a time-frame to accomplish it (one week). Over the years I’ve learned

more about Python with various projects (both professionally and for

myself) that had daily practice and clear end goals.

You’ll need to experiment to see what works best for you. The un-

derlying principle is that your learning process should be something

that you can use for any language or concept in programming. It should

also offer the least amount of resistance to your learning. Your ability

to learn and adapt will be vital to your experience as a programmer, so

understanding your learning process and what works best for you will

help you in this process.

At the very least, set aside 10 minutes per day as a container (see

previous chapter) for focused reading and learning. There is a lot to

learn in programming and creating a habit of learning will help you

keep up. Remember, though, to keep your learning contained in small

chunks. A lot of information can overwhelm you into thinking that

you can’t possibly learn it all. You’re right – you can’t learn it all in

one sitting. If someone told you to drink one of the Great Lakes in one

sitting you’d be hard pressed to complete the task (note: please don’t

attempt this!). If, however, you filled a glass of water several times a

day from one of the Great Lakes and drank it (10 minutes at a time)

you’d start to make an appreciable dent in the reduction of that lake

62 The Mediocre Programmer

over your life-time. (Sure, it might not look like much on the outside,

but that’s the junction where reality and metaphors break down).

Each day you have an opportunity to learn more about the realm

of computers and computer programming. Taking a small part of every

day to learn a little bit more will help you on your journey.

How to choose what to learn

There are many opportunities to learn, whether it be via books, tuto-

rials, videos, or computer-based training. There are also a myriad of

different topics to learn. How do you decide which one is most impor-

tant to learn? How do you manage what you’re learning? How do you

keep from getting overwhelmed with the options available?

This brings us back to focusing on one thing at a time and under-

standing how you learn best. This feedback will help you decide what

to learn next. One approach is to think about the things that you’re

most passionate about right now; what excites you at this moment? If

there’s something that you’re eager to learn then start there. If you

have multiple things that are exciting or interesting to you then write

them down on a list and notice if you are more drawn to one of the

topics than the others. If you’re still having trouble deciding from this

list then pick one at random (roll some dice or create a random-number

generator to select one — that could be a project).

If you have trouble thinking of something to learn and are strug-

gling to come up with one item that is exciting to you then give

yourself permission to browse and find what is out there. Observe

the conversations of other programmers and find out what they are

discussing. Head to a programmer meeting to follow the discussions

Chapter 6 - The map is not the territory 63

of what they’re talking about. Or, if you’re really stuck, browse some

job listings to find out what employers are searching for and notice if

that sparks some interest.

This isn’t about picking themost useful thing or themost important

thing, though your current situation may add some urgency to certain

topics over others, it is about figuring out what has your attention and

where to place your focus. Don’t be concerned with making the per-

fect choice that will get you your next job or bolster your career. This

exercise is about making a choice to learn something interesting and

sticking with it long enough to learn more about it.

Once you have chosenwhat youwant to learn then it’s time to focus

on learning it. If you have a preferred methodology (books, videos, tu-

torials, classes, etc.) then spend some time (nomore than an hour or so)

researching what resources are available. Some topics have beginner-

friendly resources available that list things that the community believes

are helpful for programmers just getting started, while others may re-

quire asking the community where to start. Often something as simple

as a tutorial can be a good way to get started with this exercise.

If you can find some resources in a short amount of time that’s

great! Start your learning process with those resources. Don’t worry if

they’re the right resources or worry that they might lead you down the

wrong path, just get started with them; you’ll come back and evaluate

them later. For now we’re more interested in just getting started.

One trap that I’m guilty of falling into is trying to find the best re-

sources for learning a topic. I’ll spend hours looking for the right book,

the right videos, the right courses; whatever it is, I want to find the

best materials available. I want to reduce the amount of false-starts

64 The Mediocre Programmer

while learning a topic. This seems like a noble pursuit (after all, why

wouldn’t you want the best materials available?). It’s also a trap and

can lead you into spending more time thinking about how you’re learn-

ing rather than actually learning. Worse, if the material starts to con-

fuse you (which is highly likely when you are learning something new)

you’ll spend your learning-time wondering if you made the right deci-

sion picking this material. You’ll wonder if you chose the right material

and continue searching for the best material (perhaps those good and

great reviews really didn’t knowwhat they were talking about after all).

This diminishes your ability to learn the topic because you’re more fo-

cused on discerning the quality of instruction and not spending time

on the actual instruction.

After a few days of practice sessions give yourself the opportunity

to check in and see how you’re learning. Are you feeling engaged or

are you not enjoying this? If you’re not feeling engaged (the material is

loosely organized, the instructor is confusing, the examples don’t work,

this material assumes you’re already familiar with another topic, etc.)

then give yourself permission to search for better material or a different

topic that interests you more. Even if your learning-experience wasn’t

great you’ll have a better idea of what to look for when choosing some-

thing new. You’ll have a sense of where your gaps are in the topic and

will have a better feel for what you’re looking for in learning materials.

If you’re finding that the topic you’re trying to learn is no longer

interesting to you then give yourself a few moments to reflect on why

that is. Is it a difficult topic? Do you feel ready for the topic? Are you

currently overwhelmed with other projects and are feeling tired when

you approach this topic? Sometimes we think we’re ready to learn a

Chapter 6 - The map is not the territory 65

topic, only to realize that there’s something else we need to know before

we can fully understand the topic. It’s OK to find additional resources

and focus on those before we tackle this topic. Just be aware of your

struggles and your internal dialog. Be honest with yourself about why

you want to move to something different. See yourself in the difficulty

and notice if you’re wanting to run because it is difficult or if you are

truly unprepared for or uninterested in this topic. See if you can engage

more with the difficulty and notice when you start to feel overwhelmed

by it. Give yourself permission to stick with the difficulty as long as you

can and notice your feelings and urges as you practice with it.

Treat your learning as an iterative process, with regular check-in

periods to note your progress. Think about how you feel when you’re

learning. Are you excited and engaged or do you feel tired and with-

drawn? Do you procrastinate when you think about this topic? When

you focus on your learning does your mind wander? Note these feel-

ings as they occur during your focus sessions and reflect on them when

you think about your overall learning process. Later you can reflect on

those feelings and see the patterns in your learning process. If you feel

tired while learning you may want to try adjusting when you do your

learning session. You may need more sleep or need to find other ma-

terials that are more stimulating. If you feel overwhelmed perhaps you

need to start with something more basic before tackling this difficult

project. If you’re confused perhaps there is someone you can ask ques-

tions to gain clarity. These answers may not be apparent while you’re

in the moment (you may be too busy feeling frustrated to understand

where that frustration is coming from), but with practice you’ll be bet-

ter equipped to notice your feelings. When you notice these feelings

66 The Mediocre Programmer

you can use them to learn how your mind works and understand what

it needs in order to keep engaged with your learning.

Resistance and The Container

Any time we learn new things we put ourselves into a vulnerable and

uncomfortable place. We take the things we are familiar with and try to

apply them as we push into new territory. We become uncertain of the

outcome; will it be successful or will it be a failure? Will this topic be

too difficult for us to grasp? Will it help us or hurt us? Will we choose

the wrong thing to learn and will that cost us opportunities in the long

run?

Discomfort and uncertainty are certainly a part of learning, but in-

stead of thinking of them as something to be avoided we should instead

think of them as beacons. A beacon gives us direction and illumination

when we’re in uncertain territory. When we feel uncertain about what

we’re doing that feeling means we’re pushing into new territory. In-

stead of trying to avoid it or wishing for comfort, we can instead relish

that we’re in uncertain territory and feel those brief twinges of fear and

doubt. We can say “I’m about to learn something new. I’m frightened,

and don’t know where this will lead, but that’s OK. I’m willing to see

where this goes and enjoy the journey.”

We’ve been conditioned to think of the unknown as something to

be feared. These emotions have served us well. They’ve kept us from

venturing too far out of our comfort zone and exploring the unknown.

When you’re living in forests and caves the unknown can house all sorts

of dangers. It makes sense not to provoke those dangers by showing up

on their doorstep. But programming is not the same as venturing into a

Chapter 6 - The map is not the territory 67

dark forest or peeking into a damp cave; programming hardly warrants

the amount of fear we give it. Instead we need to realize that we’re not

in any mortal danger. Our fears are merely letting us know that we’re

venturing into the uncharted territories of ignorance. It’s up to us to let

our fears know that this is OK and that by exploring these realms we

will only find understanding.

Steven Pressfield in The War of Art nicknamed these feelings “Re-

sistance”. He considers Resistance as a sort of mythological being who

lives in each of us to thwart creative acts. As the work progresses Resis-

tance ratchets up the pressure to stop by introducing the feelings of fear

and anxiety that we mentioned above. I think of Resistance as some-

thing that also happens whenever we are learning, especially if we’re

learning tools that help us in our creative pursuits. Pressfield limited

his definition to creative folks who were working to complete creative

work (books, paintings, games, etc.), but I’m expanding his definition to

the learning process itself. In our case Resistance shows up when we’re

learning the tools to help us be more creative. Resistance is what tells

us we’re not good enough to learn these things, or we’re unworthy of

the benefits they’ll bring us. It tries to keep us safe in what we already

know.

This is why the “focus container” is so important: it gives us small

doses of discomfort and difficulty in manageable chunks. We can guide

ourselves through small amounts of daily discomfort and keep learning

through our discomfort. It helps us work through our tendency to avoid

and hide from difficult situations. If we focus on one thing at a time we

can keep ourselves from the distracting thoughts about whether or not

this is the thing we should be working on. Whatever we’re working

68 The Mediocre Programmer

on in this moment is exactly what we should be working on. Whatever

learning material is in front of us is what we should be learning. We can

be secure in knowing that everything we are doing for the duration of

this container is exactly as it should be. When we finish the container

we can reassess how it went and what challenges lay ahead.

Mapping out longer-term goals

As you progress through the learning process you’ll start to see that

a lot of what we call programming is interconnected. Languages bor-

row heavily from each other and ideas that seem new and innovative

have their roots in concepts dating back to the genesis of computing.

Rather than dissuading us it should encourage us to open the doors of

programming by learning simple, transferable concepts. The question

is, which ones?

The simplest answer is “all of them”, but that’s hardly satisfactory or

possible. A less cheeky answerwould be “enough of them to start seeing

the patterns emerge” but that soundsmore like a truism than something

we can use to start making our longer term goals for learning.

Rather than give specific advice on which concepts will serve you

best in your pursuit of becoming a better programmer I’m going to sug-

gest a technique that might help you map out what could help you.

Programming languages will mention the concepts they borrow

from. Whenever you’re learning and you see mention of one of these

other concepts make a note of it and keep focusing on what you’re

learning now. When you’ve completed your learning for the day review

the list of other concepts and do some searching to see what else

shows up. If there are other things that show up then write them down

Chapter 6 - The map is not the territory 69

on your list. These concepts might not make sense at the moment

but having that list available and referring to it might help you make

connections about programming that you might not otherwise notice.

When I was learning JavaScript I noticed that someone mentioned

that JavaScript borrowed from languages like Scheme. Scheme is a

functional language based on Lisp and was created as a teaching lan-

guage for functional programming and recursion. So I took a brief de-

tour into learning Scheme, partly because it was more interesting to me

than JavaScript. Call it “creative procrastination”, if you’re being char-

itable. What I learned while learning Scheme piqued my interest into

other functional languages and functional programming. This in turn

helped me understand some of the functional programming paradigms

that were becoming popular in Python (list comprehensions, lambdas,

etc.). By taking a brief detour in my learning of JavaScript I learned

more about a whole family of languages and now I feel like I under-

stand JavaScript and Python with more clarity than when I started.

I’m not suggesting that everyone take the “creative procrastination”

steps like I have (I’m still in the process of learning JavaScript as of this

writing), but it does help to make notes of the concepts you encounter

and dig further.

This is one way to map out learning goals (notice the other connec-

tions that show up as you are learning and be curious about how they fit

together), but you may need a different approach. Perhaps you’re un-

der pressure to learn something to remain marketable or acquire some

skill for your job that needs to be learned quickly. How do you map out

those goals?

The pressure to learn quickly can make any task seem insurmount-

70 The Mediocre Programmer

able, especially if you don’t know how best to proceed. You may be

tempted to rush through this process and hope you retain the knowl-

edge you’ve learned. This approach doesn’t lead to understanding, it

leads to stress and burnout. The approach I’m outlining is designed to

help you learn how to learn. The best way to learn something quickly is

to understand how other concepts fit together with what you’re learn-

ing. This is great when you have experience with a lot of different lan-

guages and concepts, but for those who don’t have much experience

yet it will feel like you’re trying to shove an elephant through a small

funnel. This is where practicing learning every day will help you. It

will help you break apart larger learning goals into smaller chunks and

will help you recognize the fear and discomfort for what they truly are:

acknowledgment that you’re expanding your skills into new territory.

Longer-term goals are just goals that have been broken down into

shorter-term goals. Focus on the short-term goals and allow yourself

to course-correct and follow a few connections as needed.

Failure and learning

One thing that we are afraid of while learning is failure. We worry that

wewon’t learn the topic quickly or completely. We pick upmaterial that

starts off simply but later on becomes very complex, and we struggle to

keep up. We try typing example code into our editors and find ourselves

needing help to get them to work. We fail to grasp the material and

wonder if we’ll ever learn what we’re trying to learn.

Failure is a part of learning. If you knew the material you wouldn’t

be learning.

One of the reasons for practicing learning using containers is be-

Chapter 6 - The map is not the territory 71

cause we give ourselves those brief moments of failure and repetition.

Repetition is how we get better at whatever we are learning. Failure

allows us to course-correct our learning so we can determine how best

to approach this the next time we make an attempt.

We often feel that failure is something to be avoided, butwhile we’re

learning it is unavoidable. Our learning process requires us to fail in

order to get better at what we’re learning. That’s the whole point of

learning: reworking our brains so that they can finally understand the

concepts we are trying to learn.

Part of learning is having the right mindset for learning. Instead of

feeling like you’re constantly failing and struggling to keep up you may

want to approach it with a different perspective. Instead of thinking “I

can’t do this. It’s too hard.”, approach it with a more curious “This is

all new to me. This is why I’m practicing learning this.” Giving yourself

a more positive mindset will help keep you from giving up when you

struggle with the material.

Dead ends and changing topography

Sometimes we’ll find ourselves learning something that’s a dead end.

We look at our progress and see no real improvement. We don’t find

the topic as engaging or as exciting as we’d imagined. We realize that

what we’re learning is an evolutionary dead-end in the realm of pro-

gramming. What then?

Part of our learning process is understanding that our expectations

of how something will turn out can be completely different from how

things actually do turn out. We envision all sorts of rewards and plat-

itudes that never come. Does that mean we’re at a dead end? I don’t

72 The Mediocre Programmer

think so. It might be that what we expected we’d be doing with our

newfound knowledge isn’t panning out. We might find our expecta-

tions for how quickly we’d learn the topic aren’t being met. We may

also expect that our career will be bolstered by learning this topic, yet

the job market hasn’t recognized our new-found skills with job offers

or more money.

Our engagement is related to our expectations. Programming de-

mands a certain amount of fun and reward, and if we’re not finding the

experience fun or rewarding then we’re unlikely to want to continue

learning that topic. Our minds begin wanting something else to en-

gage us, and we start craving anything other than to continue with this

learning process. After all, shouldn’t we be enjoying this? If there’s no

engagement and enjoyment then the learning becomes drudgery. We

become distracted more easily while trying to learn and our minds drift

away rather than focusing on our learning experience.

There is also the problem of learning things that are evolutionary

dead ends. The world of computing is littered with the remains of

technologies and methodologies that are either no longer relevant or

are considered “out-of-fashion.” What once was cutting edge is now

considered moribund, and the community around that technology or

methodology scoots on to new technologies and methodologies and

leaves their previous work as a technological ghost town. When we

mention that we’re learning these things we get curious looks from de-

velopers: “Why would you learn that? We’ve moved on to this other

thing.” It’s as if we’ve heard about a party and arrived in time to see

the clean-up crew picking up the litter and breaking down the tables

Chapter 6 - The map is not the territory 73

and chairs. We feel like we’ve missed out on the good parts and won-

der if it’s even worth trying to keep up and find the next thing.

All of these can pose their own problems for learning, but it’s up to

us to take a more critical look at why we started this whole process of

learning. What did we bring into this?

In each of these cases we brought our expectations of how the learn-

ing would progress. We brought the expectation that it would always

be fun, engaging, and relevant. Sometimes our learning expectations

do pan out, but when they don’t we get discouraged and disappointed.

Rather than being upset at how our expectations of learning this

technology or methodology aren’t being met we can take a more mind-

ful approach. We can see ourselves in our moments of learning and

notice if we’re trying to bring more than our focused attention into the

learning container. We can realize that learning is about changing our-

selves and change is not always fun, engaging, or pleasant. We can put

aside our expectations and concentrate on the learning itself.

That doesn’t mean we shouldn’t acknowledge our feelings. We

should certainly acknowledge the feelings of boredom, anxiety, disil-

lusionment, and so on, but we should also be mindful of where those

feelings originate. Are we truly bored or is this our mind trying to tell

us to stop so we can do something more fun? Are we not engaged with

this material because we don’t find it relevant or are we giving in to

our distractions? Is this really a dead-end in our learning or are we

just feeling stuck? Notice when the feeling comes up and be curious

about what prompted the feeling. Note when you get the feeling and

where you feel it most in your body. Stay with the feeling for a few sec-

onds and keep noticing it. Then, continue your work. While you work

74 The Mediocre Programmer

keep noticing all of the feelings you’re having and repeat the process of

staying and noticing your feelings. When you’re finished you can re-

flect more on those feelings and make an honest determination of what

those feelings are indicating. Through this process you can clarify what

is causing those feelings and notice if they are just resistance to learn-

ing new material or a desire to run to distractions or something more

familiar.

If, however, you realize that you’re really not enjoying learning this

topic, if you feel you’re spendingmore time convincing yourself to learn

rather than actually learning, then you’ll need to have an honest dis-

cussion with yourself about why you’re learning this topic at all. Is

this topic still relevant to you or has the topic become irrelevant? Are

you learning this out of an obligation to yourself or others, and is that

obligation still present? Are you trying to learn whatever it is because

you’re worried you’ll be left behind, personally or professionally? Think

about what brought you to start learning this topic and determine if the

situation has changed. If someone came up to you and asked you if you

would like to use this topic in the next few days would you consider it?

You’ll need to reconsider your true motivations for learning this

topic and see if they still match what you want to do with your pro-

gramming profession. You will also need to be honest with yourself

about why you’re learning this topic and why it is important to you.

There are plenty of things to learn that are great career paths, but if

you have no interest in the topic, or are just learning it “to get hired”

you’re going to have a more difficult time learning the topic than if

you had a genuine interest in it. You’ll also need to determine if this is

just resistance to learning. Your challenge will be to sort out your true

Chapter 6 - The map is not the territory 75

feelings about this topic and tease out whether you’ve genuinely lost

interest or are just struggling.

There have been many things in my career that I have tried to

learn, but there have been many more that I haven’t learned. Part of

the reason I haven’t learned them is because the computing landscape

changed as I was learning them. At school I learned the Pascal lan-

guage. I got reasonably good at it but over time my Pascal skills have

faded. Right now there’s very little need for proficient Pascal program-

mers so continuing to develop my Pascal skills would be purely for my

own enjoyment. I find other computing topics more enjoyable so my

Pascal skills lie dormant. Should Pascal arise from its moribund state

I can revisit the decision to reinvigorate my Pascal knowledge, but for

now I’m content that I’ve made the right call. At one point in my career

the Java language came to prominence. I spent many sessions learning

Java until I realized I didn’t enjoy the language. It felt too cumbersome

to me and the directions it took weren’t ones that I cared to pursue.

So after some reflection I stopped learning Java. Was this all wasted

time? Hardly. During my sessions I learned more about Object Ori-

ented Programming and how objects fit together. I learned more about

recursion while trying to solve a problem for one of my projects. These

skills transcend Java, so when I started learning Python I was able to

transfer my knowledge on how objects worked from Java to Python. I

used that knowledge to understand what Python was doing and how it

was different from Java. Should the need arise I can revisit my decision

to stop learning Java and see if it interests me again.

It’s OK to give up on learning something. It’s up to you to determine

what you want to learn and for how long. We are complex beings and

76 The Mediocre Programmer

our interests morph and change. We also exist in a complex industry

of changing whims and technologies. What was interesting and neces-

sary at the beginning of the year might become uninteresting or unnec-

essary at the end of the year. We shouldn’t feel beholden to learning

something just because others are learning it or because the job market

seems to require it. Give yourself permission to listen to your own de-

sires. If theymatch up with what a fickle industry wants then great! Go

learn with abandon. But if they don’t match up and you find yourself

spending weeks trying to stir up enough motivation to learn the topic

then you’re doing yourself and your craft a disservice. Let this topic sit

dormant for a bit and give yourself something else to learn. There is

little point in making yourself miserable to please others.

If you feel the urge to revisit this topic at a later point then let your-

self come back to it. You should also allow yourself to come back to this

topic without the baggage and expectations of your previous attempts.

Saying “I already tried this once, so we’ll see if this works this time”

sets your mind to expect that you will give up again. Give yourself

permission to approach this topic as though you’re experiencing this

topic fresh, with no expectations of how it will turn out. Be gentle with

yourself and experience this topic again from your current perspective.

Approach with curiosity

As beginners we engaged the computer with curiosity and enthusiasm.

We didn’t knowwhat to expect and had no idea how long it would take.

We just learned as much as we could and took everything at face-value.

As we continued to learn we traded our curiosity for certainty, and our

enthusiasm for expectations. The excitement we got from learning be-

Chapter 6 - The map is not the territory 77

came the drudgery of feeling that we must always be learning. We

can re-capture that beginner’s spirit by looking at each opportunity to

learn as a new experience. We can let go of our expectations of how our

learning will progress and instead approach each learning session with

curiosity for what wewill learn during the session. We can re-kindle the

spark that we had when we were beginners with infinite possibilities.

That spark will sustain us through the periods of uncertainty.

We can learn to love learning again. With each focus container we

can approach our learning fresh, with no preconceived notions of how

it will end, and be curious for what we’ll find when we dig deeper into

what we’re learning. Each learning session brings us one step closer on

our journey to close up the gaps. There so much to explore in our field.

I hope you always find something new and exciting to help you on your

journey.

Chapter 7

The struggle within

The emotions of programming

There’s a stereotype of a programmer sitting emotionless in front of the

computer. The stereotypical programmer sits, quietly entering lines of

code as though they were transcribing them from memory. If you’re

a programmer or have been around programmers you know that the

stereotype should be that of a frustrated composer. Sure, we sit in front

of our computers in long periods of silence and concentration, but we’re

far from emotionless. We bask in the glories of code that works per-

fectly the first time. We glower at code that misbehaves. We go from

cheering ourselves in victory to cursing the machine and threatening

it with clenched fists. We clench our teeth when bugs rear their mis-

behaving heads. We swing from emotion to emotion: exuberance, joy,

fear, anger, resentment, sadness, loneliness, guilt, and shame.

No wonder we’re exhausted by the end of the day.

Programming is a taxing process. Not only do we need to keep a

80 The Mediocre Programmer

mental model of the software we’re working on, but we also keep a

mental model of how the software should behave. We create a story

of how this software will work and paint a picture of how we will feel

when everything works as we envisioned. We create an emotional at-

tachment to the software. Our emotional state can mirror what we feel

about what we’re creating; excited, bored, or stuck. Keeping a positive

attitude about software that isn’t measuring up to our expectations is

exhausting. Couple that with our own insecurities, fears, and doubts

and we begin to see why programmers tend to burn out — it’s a combi-

nation of the stress of the job and our emotional reaction to that stress.

Emotional drains

There are several factors that can cause us emotional highs and lows

while programming. These are some that I’ve noticed, both in my own

programming and while talking to others about their programming.

.1 Purpose and utility

If we clearly see where and how this code will become useful we can

get a sense of drive and purpose — we’re working toward something

that will benefit folks! We know that people are depending on us so we

do our best to make the code work regardless of the pitfalls that await

us. We tap into the emotional highs of self-worth and purpose to help

carry us through to completion.

The opposite is true, of course— if we don’t see the purpose then our

work will seem useless and in vain. We’ll struggle tomeet deadlines and

feel a sense of worthlessness in our pursuits. Sometimes it’s a project

Chapter 7 - The struggle within 81

that isn’t aligned with our own purposes and goals. It can be a poorly

managed project that we’re being forced to work on because of external

pressures. We might find ourselves forced to meet arbitrary deadlines

that we never agreed to meet. We can become frustrated if we don’t

understand the ultimate goal of whatever project we’re working on.

.2 Engagement vs. boredom

We’ve already experienced several layers of engagement with our pro-

gramming. These are the projects that don’t feel like a chore while we

work on them. We feel like we’re learning something each step of the

way. The outside world disappears while we work in this cocoon of fo-

cus. We lose track of time and feel both disoriented and refreshed when

the work is completed.

Unfortunately we’re probably more experienced with the opposite

of engagement: boredom. The code base doesn’t engage we at all. The

topic we’re learning or working on is just re-hashing something we al-

ready know. It’s a chore to get started. Everything else in the world

feels way more interesting and the minutes drag along throughout the

whole process.

.3 Awake vs. tired

Sleep is a major contributor for how we perceive the world. Getting

enough sleep allows us to feel refreshed, awake, and inspired. We need

to have the energy reserves to take on whatever challenges befall us.

When we don’t get enough quality sleep we become irritable and less-

open to engagement. We conserve our resources as best we can lest we

82 The Mediocre Programmer

use them up too quickly. We look to stimulants (caffeine, distractions,

and the like) to keep us engaged throughout the day.

.4 Mental state

I’m using “mental state” in a broad sense to cover any of our exist-

ing feelings and current mental well-being. These can range from tem-

porary feelings of unhappiness and melancholy to complex and seri-

ous topics like clinical depression and Post Traumatic Stress Disorder

(PTSD). Our minds are complex machines that do their best to adapt

to the situations and environments presented to them. At times this

adaptation can clash with our desires to be productive and the struggle

between our mental state and our desires can cause further emotional

drain, discomfort, and despair.

There aremore things that can affect our emotions but these are the

ones that I’d like to focus on as they cover a broad spectrum of what

we bring to the tasks of learning and programming.

Awareness of our Emotional State

Being aware of our emotional state (what we’re feeling right now) gives

us our current emotional location. We can map out where we are and

understand what our mind is telling us. Giving ourselves a few mo-

ments to truly notice what emotional state our mind is in will help us

to move forward.

Note that we’re not trying to change our emotional state. We’re

not trying to force ourselves to be something that we aren’t. If we’re

truly unhappy with where we are or what we’re doing it’s more helpful

Chapter 7 - The struggle within 83

to understand what’s causing our unhappiness rather than try to paper

over and prevent those emotions. Seeing our emotions clearly allows us

to recognize what is causing them. Being present with these emotions

allows us to better understand our mental state and what we’re capable

of in the moment.

You can do this in the context of mindfulness meditation but even

sitting at your desk and thinking “for one to two minutes I’m just going

to sit here and explore my emotional state” should suffice. Noticing our

emotions, understanding what they are, and digging in to find out what

is causing them can help us understand what we’re feeling.

You might already know what is causing these emotions and emo-

tional state and be afraid of exploring them. Some emotions may over-

whelm us and make us feel in ways that we don’t want to feel. This is

especially true for emotions related to anxiety and PTSD. Do as much

of exploration and introspection as you are able, and be gentle with

yourself. Remember, you’re not trying to change the emotions, only to

notice them. You may find that your gentle prodding of these emotions

can lead you to better understand them. Be as brave as you can with

these emotions and if they start to overwhelm you then pull back and

let the residue of those feelings subside before continuing.

Our story

Each of us has a story we tell ourselves. These stories shape our per-

ception of the world. We tell ourselves stories of how the day will be

and how we will engage with the day. We create a world through our

stories in which we are the central protagonist of our story. We tell sto-

ries such as “the work I’m about to do will be amazing” or “I’m going to

84 The Mediocre Programmer

work through this problem quickly and will have an awesome solution

when I’m done”. That’s if we’re being positive with ourselves. When

we’re being negative with ourselves our stories weave a tale about how

we’re not good enough at what we’re doing and will likely fail in the

attempt. Those stories create a complex tale of struggle, pain, and mis-

ery where everything wrong with the world is the direct result of our

actions.

Our emotions help inform the type of story we tell. If we’re feeling

amazing we tell ourselves that what lies ahead will also be amazing. If

we’re feeling down and defeated our story reflects our defeated tone.

The truth is that our story is just that — a story. Our stories are

not a guarantee of how the day will progress. We can tell ourselves a

story that today will be amazing and watch in horror as each interac-

tion causes our day to be anything but amazing. Conversely, our story

could be that today will be terrible and we won’t accomplish anything,

but instead we experience a decent and productive day. The story only

accentuates what we’re experiencing; it can’t predict what we will ex-

perience.

Rather than being attached to these grand stories we can focus

more on the things that we love about the present moment. Instead

of a story that you’re going to have an amazing day you could focus on

the aspects of your project that appeal to you and hope that you can

work on them soon. Instead of filling your day with stories of dread and

doom you can focus on the little victories that happen along the way.

Even something as simple as “my computer booted without crashing”

can be a victory. One of those little victories could be setting an inten-

tion to remain focused and curious for the next 10 minutes (the focus

Chapter 7 - The struggle within 85

container from previous chapters) and celebrating when you make it

through that intention. You can get more little victories as you keep

working with that intention throughout the day. Our little victories

won’t all be perfect (perhaps your computer is being extra stubborn

today), but we can use them to re-calibrate our day for the next 10 min-

utes and keep using them to re-calibrate throughout the day as each

container of focus becomes another little victory.

Giving ourselves the ability to focus more on the present and the

very next steps we’re about to take gives us a mindful way to check in

with ourselves and our progress. We can focus on the positive aspects

of what we’re doing instead of worrying about how reality is diverg-

ing from our stories. We can course-correct throughout the day and

keep trending towards a more positive and productive day rather than

fretting about how distant we are from our ideal day.

This will take practice. We’re accustomed to letting our stories drive

our day, but over time we’ll be able to break our day into smaller chunks

where we can be more mindful of the stories we tell ourselves.

Awareness in action

Let’s pretend for a moment that it’s a typical day for us. Today we’re

feeling anxious. We’ve just received a bug report and it’s related to

something we’ve been working on. The bug report states that the code

that we committed to the project earlier this year isn’t working and

likely never worked the way we thought it worked. As we read the bug

report our anxiety levels increase. Our inner monologue kicks in and

we start telling ourselves that we aren’t nearly as good as we thought.

We’re not perfect. We suck. We didn’t get enough sleep the night before

86 The Mediocre Programmer

so our emotions are in a state of heightened awareness. Our mind races

and flashes back to images of the other times when we’ve failed. As

we keep reading our sense of dread kicks in. Our internal monologue

becomes a frenzied chatter: “What will they think of me? What do they

think of me now? Am I going to lose my job over this?”

Before we’ve even finished reading the bug report we’ve created a

story. The story begins with our own anxiety for what will happen dur-

ing the day. Then the worst happens: we get something that confirms

our fears. The story then presents us with a montage of our past fail-

ures and adds this latest bug report as a capstone to the montage. Our

story then ratchets up the pressure by raising the stakes of the impor-

tance of this bug report: not only do we have to fix whatever broke, but

now we have to fix our reputation and start a job search. As the story

progresses in our minds we wonder if we’ll ever work as a programmer

again, and feel that our career as a programmer is over.

The story we created is a terrible story, but I’m sure you can relate

to the factors that generate it. It’s a story that draws from the deep

pools of our own feelings of inadequacy and insecurity. It’s fueled by

fear: fear that you’ll ruin your reputation, fear they won’t trust you,

and fear that you’ll fail.

Fear is one of the most powerful emotions we have, but it’s not the

only one. Reading that bug report may also elicit other emotions like

grief (we thought that code was good and now that thought is gone.),

uncertainty (how will we fix the problem?), and anger (how could we

have deluded ourselves into thinking this worked?). We may also have

other feelings: sadness, loneliness, and abandonment. Our sense of self

Chapter 7 - The struggle within 87

worth may also be affected, and we could feel disconnected from those

whom we serve and the folks we work with.

Being aware of these feelings can help us parse the story we told

ourselves and how it didn’t match reality. These feelings and the story

we told ourselves can give us feedback on how we are perceiving our

world and the work we’re doing. Pausing for a moment to acknowledge

our feelings and understand where they are coming from give us an

understanding of what our emotions are trying to tell us.

You can relax now. The bug report in this book isn’t real, but take a

moment to recognize the feelings that you felt when you read the above

section and notice where your mind went. That’s the kind of awareness

we’re seeking to have.

Finding our feelings

Our feelings manifest themselves in our bodies in many different ways.

Fear can be a knot in our stomachs or tension in our chests. Anger

can make our jaws clench or make our heads feel hotter than normal.

Sadness can feel like a weight upon our shoulders, or make us feel tired.

When we notice these feelings we can pause for a moment and just sit

with our feelings while we keep noticing them.

Think of this exercise as though you are scanning your body for the

source of the feelings you’re having. Notice where your mind is drawn:

tightness in your chest, tightness in your stomach, a clenched jaw, or

whatever you may feel. Notice the sensation of that feeling. You can

dig deeper and try to find the underlying causes of the feeling but for

now just notice that it exists. Sit for a fewmomentsmore and be curious

about how it feels. Notice any other attributes about that feeling: color,

88 The Mediocre Programmer

texture, intensity, or any other attributes you’re experiencing. Let the

feeling exist — be kind and gentle with it. Allow it to exist without

judgment. Give it space. Above all, don’t try to fight the feeling or wish

that it would end; just notice it. Eventually the feeling may subside, but

for now just acknowledge that you have this feeling and you’re going

to be curious about it.

Some feelings and emotions aremore painful or traumatic than oth-

ers. Give them space and let yourself be curious about them for as long

as you are able. If you notice your mind starting to panic or feeling

overwhelmed by these feelings then you may stop noticing them be-

fore they overtake you. Remind yourself that these are emotions and

those emotions are a part of you. You and your emotions work together

to help you. You’re both on the same team.

This exercise isn’t about dwelling on or punishing yourself with your

feelings. If the act of noticing these feelings causes you to experience

physical or emotional pain then you may need help from a professional

or a support group to help guide you in understanding these feelings

and where they come from. A professional or a support group can help

you have those feelings without having those feelings overwhelm you.

There is no shame in finding others to help you along your journey.

Emotional Triage

One of our learned behaviors with our feelings is to run away from them

or try to suppress them. We do our best to avoid feelings that make

us unhappy or uncomfortable. We also try to hold back our positive

feelings lest we show too much exuberance. This can lead us to be

confused or conflicted about what we’re feeling and why we’re feeling

Chapter 7 - The struggle within 89

that way. By sitting with our feelings and emotions and understanding

where they’re coming from we can get a clearer idea of what our mind

is thinking and the story we’re telling ourselves.

Think of this practice as emotional triage. Hopefully you’ve never

had to go to a hospital emergency room, but if you have you’ll see a

whole array of medical professionals who are trained to diagnose what

just walked through the door and determine the severity of the problem.

When we recognize and reflect on our emotions we too are diagnosing

what emotions we’re having and the severity of those emotions. We

take these moments when we’re experiencing these emotions to deter-

mine what the emotions are and what triggered them. As we review

our emotions we are gentle with them and recognize them for what

they are. A good medical professional doesn’t impose their own desires

on the patient; they simply accept the patient for who they are, diag-

nose what the patient is experiencing, and act accordingly. When we

recognize our emotions for what they are and determine where they

are coming from we can better understand what we’re facing.

The more we do this practice the better we’ll become at recogniz-

ing our emotions and why we’re having them. We’ll be better able to

notice what we’re feeling and understand why we’re feeling that way.

When we feel anxious we can recognize that it might be because we’re

exploring an area of programming that we don’t fully understand. We

can feel that anxiety for a bit (don’t try to chase it away) and then think

about what we’re currently working on and how we can explore those

areas that are new to us. We can then mentally note those areas or

write them down (preferably in a journal) so that when we complete

what we’re doing we can review the areas that caused us anxiety.

90 The Mediocre Programmer

With this practice we can turn our emotions from something that

drives us into something that guides us. We can use our emotions as

tools to better calibrate our internal stories. We can re-frame our stories

about how we’re unworthy of being called programmers and instead

give ourselves the intention that we’re going to spend the next 10 min-

utes exploring this area of our work and finding where the gaps are. We

can set an intention to be curious about where this next 10 minutes will

lead us. As we continue to explore these topics we’ll notice our emo-

tions and use those emotions to let us know where we feel we need to

improve and adapt. This will allow us to change our plans as needed

and address those areas we feel are lacking or need improvement. This

cycle continues in each practice container, with our emotions acting as

a barometer for our comfort level with this topic, and helping us draft

a road-map for how best to proceed. We transform our discomfort and

anxiety from things that hinder our progress into indicators of where

we feel we need to focus our attention.

Burnout

One thing our emotional triage can help us diagnose is the feeling of

being burned out. Burnout is a collection of emotions coupled with

emotional and physical exhaustion. Burnout can be something as sim-

ple as being bored or overworked, but it can also be the sign of some-

thing more serious. It can lead to physical or mental complications if

we’re not careful. We can work ourselves into serious levels of exhaus-

tion and delude ourselves into believing it’s part of the cost of being a

programmer.

Burnout manifests itself in different ways. For some it may be the

Chapter 7 - The struggle within 91

feeling of dread while working on a project. They feel like they are

ineffectual in making any changes. For others burnout can be feeling

exhausted. They feel as though they’re on a treadmill that will not stop.

Worse, they wanted that treadmill to stop a long time ago. Burnout can

also manifest in feelings of being creatively drained, where imagining

a different future is difficult and things that were once inspiring or in-

teresting no longer generate that spark.

Burnout is tricky to self-diagnose because it is a collection of seem-

ingly unrelated emotions. Our feelings of boredom, fear, exhaustion,

and anxiety can all have different root causes, but when we combine

those feelings with an unrelenting work schedule and loss of control

we amplify those feelings. Left unchecked we can lead ourselves into

trying to numb out those feelings. We’ll find ourselves not wanting to

program anymore, and resent ourselves for ever getting into program-

ming in the first place. We can cause ourselves more undue suffering

by just “powering through it” which can lead us to compound and com-

plicate our emotional state.

There are some things we can do to understand and help alleviate

burnout:

• Realize that we’re burned out, or about to burn out. Acknowl-

edging that we’re about to burn out is key to not experiencing

the burnout. That seems simple enough but we tend to ignore

the symptoms when we’re nearing the throes of burnout. If we

can recognize that we’re about to burn out then we can take mea-

sures to avoid it. And if we realize that we’re burned out we can

take measures to be kind to ourselves and help ourselves out of

this burned-out state.

92 The Mediocre Programmer

• Examine our emotions. Sit for a while and notice what emotions

come into view. Are we feeling stress, fear, anxiety, nervousness,

or anger? Notice what feelings emerge and recognize these feel-

ings. Examine where these feelings are coming from and what

might be triggering these emotions.

• Re-negotiate our commitments. Many times burnout is the re-

sult of over commitment, whether to ourselves or others. We al-

ways have too much to do, and despite our best efforts we will

always acquire new obligations. Perhaps the plans wemade were

too aggressive, or something changed in the world that disrupted

our plans. Whatever the reasons we may need to re-evaluate

what is expected of us and what we are capable of doing. If we

see that we’ve created an intractable situation for ourselves we

need to figure out how to remove some of these obligations or

re-negotiate them.

• Give our “drive” a rest. Unlike our mechanical counterparts we

need downtime and rest. We can’t work a straight eight or more

hours without at least some moments where we aren’t working.

Programming demands a lot of mental bandwidth and pushing

ourselves to exhaustion can lead to emotional instability, stress,

and burnout.

• Examine if this is truly how we want to live our lives. We need to

determine if what we’re doing is really what we want to be doing.

If we’re not happy with what we’re doing then every moment we

continue doing it can compound our feelings of unhappiness. If

we feel nothing but dread for our current situation then we may

need to renegotiate our commitments. That can be something as

Chapter 7 - The struggle within 93

simple as agreeing not to learn something right now, or can be as

complex as taking on different work or changing careers.

By understanding that we’re headed toward burnout (or are

burned-out already) we can take measures to course-correct so we

can approach our programming practice with joy and enthusiasm.

Sometimes taking a step back and re-evaluating what we’re doing can

help us not sit in the constant loops of frustration, anger, and guilt.

Changing our story to better fit reality can keep us from trying to

match an impossible dream.

I mentioned before about re-negotiating commitments. We often

get ourselves into situations where we have way more to do than is

physically possible, even under the best of circumstances. This may be

in part because we’ve said “yes” to too many things, or because we’re

being swamped with work commitments, such as a large high prior-

ity project, or several smaller projects that need urgent attention. The

best way to renegotiate your work load is to review your work load

and notice which tasks feel “urgent” and which ones feel “important”.

“Urgent” tasks are tasks that feel like they need to be done immedi-

ately. They might not be “important” tasks, but they have a sense of

urgency to them. “Important” tasks are tasks that will benefit yourself

or others. These are tasks that have significant value when completed,

both monetarily and significance. Take out a sheet of paper or open up

a text document and create two categories: “urgent” and “important”.

List out the tasks you need to complete and categorize them under “ur-

gent” or “important”. Next mark the due date (as best you can) of each

of these tasks. If you have more than three urgent and important items

and they’re all due the same week then it’s likely you’re overworked

94 The Mediocre Programmer

and will need to renegotiate those commitments. You may feel that

you are capable of doing all of these things but if you’re already feeling

stressed, tired, and burned out then you’ll only compound those feeling

by trying to meet the deadlines. If you can, find out if you can move

some of these deadlines to the next week, or check with your customers

to find out if these are really as urgent and important as you think they

are. If they are urgent or important then find out if your management

can assist you with other resources, or if they can intervene to renego-

tiate these deadlines and priorities. If you’re truly stuck (management

won’t budge and the customers won’t renegotiate the commitments)

then you have some decisions to make about how important their pri-

orities are versus your own capabilities. There’s the temptation to say

that your management and your customer’s priorities are more impor-

tant than your own priorities (they facilitate your income, which con-

tributes to making your lifestyle possible), but your own health and

well-being should have more weight in your decision than their prior-

ities and deadlines. Perhaps you can negotiate some down-time after

this period so you can rest, relax, and regain your strength and mental

acuity before being plunged into a similar situation.

Learning to say “no” is an important skill as a programmer. Too of-

ten we regard ourselves as super-beings that can do anything, in part

because the computers wework on seem like they can do anything. Un-

fortunately, we have finite physical and emotional resources, so learn-

ing to pick and choose the projects that are most important to us (de-

pending on our own internal criteria) will help sustain us as we progress

through our programming careers. If we say “yes” to everything that

someone pitches to us then we’ll have less time to work on things that

Chapter 7 - The struggle within 95

really matter to us. We’ll be at the mercy of folks whose priorities and

desires do not match our own. The most effective way to burn-out is

to spend all of your energy working on projects that don’t match your

own priorities and desires.

You will experience periods of burnout in your programming ca-

reer. Things will come at you that will overwhelm your ability to cope

with them. You will find yourself stuck in loops wondering if this is

really what you should be doing. Understanding what you’re feeling

and acknowledging your feelings are valid is the first step to changing

your trajectory from burnout and stress. Programming shouldn’t be

drudgery (no work of value should be drudgery). There should be some-

thing in your programming day that keeps you motivated and helps

you grow your skills. Adding bits of learning, joy, and wonder, along

with periods of downtime, will help sustain you through the emotional

turbulence that awaits. And recognizing when you’re burning out and

renegotiating your agreements with yourself and others can help rein-

vigorate your desires to keep programming.

Reaching out for help

I want to emphasize that it’s OK to ask others for help. I’ve struggled

with asking for help. Part of my reluctance in asking for help was in-

stilled in me whenever I would ask a question and get the dreaded “you

should know that already” response. Other times I believed that by ask-

ing for help I would somehow diminish my reputation. I’d be exposed

as a fraud and an impostor. Folks would wonder why they ever trusted

me in the first place. But when I actually asked for help the responses

I received weren’t “why don’t you know this?”; they were “why didn’t

96 The Mediocre Programmer

you ask for help sooner?”. Sure, there were occasions where someone

would be surprised I didn’t know something, or I would receive some

criticism for my ignorance, but I’ve found that the benefits of asking

the question outweighed any negative effects.

Asking for help isn’t just limited to asking technical questions; there

are many more ways that we might need help. We may need to ask

our colleagues to help us during a difficult time in our lives. We may

need the help of our management when we’re struggling personally

and professionally. We may even need a whole different set of support

staff to help us along (doctors, therapists, etc.). Involving other people

with our struggle can be daunting (even overwhelming) but getting help

early can help prevent the more serious forms of burnout and stress.

The most common reason for our reluctance in asking for help is

our desire for comfort. Asking for help means placing ourselves into a

state of vulnerability and hoping the people we’re asking to help us will

treat us with kindness, respect, and dignity. This vulnerability can be

amplified if we don’t know the person we’re asking for help, or if the

person is amedical professional. But putting ourselves in these vulnera-

ble situations is necessary, especially if the problems or situations we’re

facing are out of our control or experience. If we’re close to burning out

(or are suffering through burnout) we may need the help of a doctor or

therapist to uncover better ways to cope with what we’re experiencing.

If our job is causing stress and strain we may want to talk with others

in our community to find out if others are also experiencing these feel-

ings. Even the simple act of commiseration with our peers can help us

realize that we’re not alone in facing these issues, and may help us find

better ways of managing our workload and stress. They may also help

Chapter 7 - The struggle within 97

us recognize abnormal or abusive situations that we’re facing. Some-

times we don’t realize when our jobs or relationships have turned from

caring and nurturing to ones that bring us more harm than anything

positive.

“There’s no shame in asking for help” is an overused phrase, but

asking for help is not a shameful act. We need the help of others. Even

someone saying “I’m sorry you’re dealing with that” can be a connec-

tion with someone else who sympathizes what we’re going through.

Finding others who are willing to listen, empathize, and commiserate

can be the difference between feeling part of a community and feeling

like we’ve been abandoned in our profession.

We also need to recognize when our support systems aren’t sup-

porting us. If we find that talking with someone else is not helping us

resolve the issue we may need to find other means of help. We may

realize that we need additional support.

Realizing the need for additional support can be difficult, but once

you have come to that realization I’d encourage you to act and get ad-

ditional help. This requires self-awareness and honesty with how you

are feeling. Only you know your situation and if you’re being honest

with yourself. If you’re not being honest with yourself then only you

can realize this and can take the initiative to seek out the help that you

need. Nobody else knows your inner-workings better than you.

Asking for and receiving help is a skill, and like any skill it needs

practice. When we’re young we have simple means of asking for help

(crying, pointing, etc.). These skills are baked into us as part of our

survival mechanisms, but as we grow our world becomesmore complex.

Our methods for asking for help need to mature as we mature. This is

98 The Mediocre Programmer

not something that comes naturally to any of us. We will struggle to

ask for help, and we will resist when we’re receiving help from others.

Repetition and careful practice will help us improve our skills in asking

for help. Improving these skills will help us to overcome the obstacles

we face throughout our day. That improvement will help us to become

not only better programmers but also better at handling the challenges

that life gives us.

Giving up

Programmers don’t like to think about giving up. Howmany times have

we asked others to be patient while we try to fix something that isn’t

working? (“Just a few more minutes, please. Honest!”) We work on

machines that seem to have limitless possibilities. As programmers we

feel compelled to explore those possibilities, but sometimes we don’t

want to do that exploration. Sometimes we look at the list of things we

should be learning and wonder if it’s worth the effort. We look at job

postings for our set of skills and find nothing but lists of meaningless

work. New programmers ask us what it’s like to be a programmer and

we consider if we should warn them about the dangers of choosing a

career that have led us to being unhappy and unfulfilled. The joy that

sustained us while learning the craft disappears and we struggle with

the fear that we will never cultivate that feeling again.

Programming isn’t for everyone. There are times when I’ve won-

dered if I should continue working as a programmer. I’m frustrated

that I can’t possibly learn everything that I want to know. I worry if

what I’m learning will still be relevant by the time I’m finished. I’m

anxious that I won’t be able to compete in a job market where every-

Chapter 7 - The struggle within 99

one else seems like they had a head start. I struggle looking through job

positions that offer work that I don’t think will be relevant six months

from now, let alone 10 to 100 years from now. I feel like the computing

future I was promised has been corrupted and all of us are stuck in a

world where computers are little more than levers for companies to pry

open the wallets of their customers.

It’s easy to become fatalistic about the practice of programming,

but I’ve realized that there’s more to computing and programming than

what the job market has to offer.

Part of the joy of programming is curiosity. If we can nurture

our curiosity while programming then we have so many avenues to

explore. There are always other ideas and other topics to discover,

such as game development, esoteric languages, or other programming

paradigms. The job market uses a fraction of the programming ideas

that are out there waiting to be explored. There are also many em-

ulators and retro-computers available with good documentation and

vibrant communities. One area that has intrigued me is learning about

how older computers work. Older computers are simple and can be

understood with patience and the right mindset. These machines are

well-understood, and most of these older programs were put together

by one programmer. They make an excellent space for learning not

only how older machines worked, but many of the concepts that still

permeate our modern machines.

What happens when we realize that there is no joy left for us in pro-

gramming? What dowe dowhen the thought of programming comput-

ers no longer excites us? How do we keep going when even the thought

of trying something new fills us with dread? What then?

100 The Mediocre Programmer

If we don’t find any joy in programming thenwe need to understand

why we are feeling this way. Maybe we’re tired after a rough project

that sapped out all of the fun and excitement of programming for us.

Perhaps the communities we’ve joined in our area and online are hostile

and unwelcoming. Maybewe thought programmingwould bemore fun

but every timewe start wewishwewere doing something / anything else

instead.

Programming is at its best when you really want to do it. It isn’t

for everyone. If you’re stuck in a situation where you don’t want to

program anymore then your best course of action is to quit being a

programmer. There’s no shame in quitting programming — many pro-

grammers have lost the spark of joy and the desire to keep program-

ming, and have moved into other fields. It’s OK to leave the field of

computer programming and do something else.

Programming is only one facet of our lives. True, it may be a big

facet of our lives, and it may feel scary to give up something that we’ve

worked so hard to accomplish. But if we realize that we’re just going

through the motions and are no longer experiencing any joy in pro-

gramming then it’s time to think about what else we can be doing with

our lives outside of programming. We’re granted a limited amount of

time to live our lives. Doing something we don’t enjoy robs us of a

meaningful life.

Giving up should not be a negative experience. There is no shame

in taking time away from being a programmer. Plenty of program-

mers have given themselves a “sabbatical” from programming to ex-

plore other interests and recharge themselves. Breaking loops of neg-

ative experiences in programming can help us identify what we want

Chapter 7 - The struggle within 101

out of programming and a programming career. It can help us find and

confirm our innermost feelings about programming and see if we’re still

meant to keep pursuing this path.

There are several fears that can keep us frommaking this breakwith

programming. The first fear goes by the fancy name of the “sunk cost

fallacy”. The sunk cost fallacy is the belief that the time and effort we

spent learning and programming is an investment, and that investment

will be wasted if we quit. Thus, in order to preserve our investment

we must keep programming. The problem with this fallacy is that it

assumes we have not already received the benefit from that time and

effort. I’d argue that learning any sort of programming is not a wasted

skill. Programming can be applied to many facets of our lives, such as

simplifying tasks into manageable steps, applying structured thinking,

and understanding basic Boolean logic. Many other fields have also

adopted computers so having computer skills can be helpful for yourself

or others. The knowledge you have will not go to waste.

The second fear is the fear that we’ll somehow let down our fellow

programmers and others in our organization if we stop programming.

This one is tricky. It’s tricky because it includes others in our decision-

making process. We might be in an organization that has a substantial

load of tasks to complete, and our decision to quit will mean these tasks

won’t be completed the way we wish those tasks to be completed. It’s

not hard to imagine our absence causing harm to the entire organiza-

tion and resulting in its eventual collapse. Is this scenario true? It’s up

to us to tease out whether our absence will truly let everyone in our

organization down. This puts us in a situation where our fear leaves us

feeling “stuck”. We feel “stuck” because our fear has created a situation

102 The Mediocre Programmer

where we’re choosing between our own well being or the well being of

others. This is a false dichotomy. Our absence might be the catalyst

for someone else to pick up our tasks and work on them, and possibly

complete them more effectively than we can in our current state. We

need to determine if we are truly irreplaceable or could someone else

take our place? The answer might be “I am irreplaceable, but I need

to leave this situation or I will cause harm to both myself and others if

this continues”. It’s up to us to review if we are helping ourselves and

the organizations we serve, or if we are harming them and ourselves by

deluding ourselves that this is working.

The third fear deals with our own personal concept of identity and

thememory of our community. If we decide to stop being a programmer

will that somehow erase a part of our identity? Will our community

stop identifying us as a programmer and will we lose contact with folks

that have become friends and colleagues? Again, this fear is tricky to

overcome because programming may be a large part of our identity.

Letting go of programming can lead to feeling likewe are stripping away

a piece of ourselves and our identity. There’s also the fear that folks will

stop calling us for jobs or other programming projects if we decide to

take a temporary break. If the break is temporary will people remember

our programming skills when we decide to return?

Each of these fears and worries are valid, but they may not be the

truth. We can be afraid that we wasted our time as a programmer, but

the truth is any learning isn’t wasted effort. We can worry how others

perceive us or how the organizations we were a part of move on with-

out us, but the truth is we can’t control their perceptions and actions.

What we can control is our participation in each of these communities

Chapter 7 - The struggle within 103

and our perception of the time end effort invested. We can determine if

a hard break from programming would be better than gradually easing

ourselves out of our commitments. We can clarify to others what our

current status as a programmer is and determine if this status is tem-

porary or permanent. The most important thing is not letting others

persuade us into doing something that we don’t want to do or is harm-

ful to us. If we need to stop programming because we are emotionally

drained and burned out then we need to make it clear to others that we

will be doing a disservice to them and ourselves if we continue.

Mature communities will understand the need to take a break and

stop programming. They will understand that your mental and emo-

tional well-being is more important than their need for you to continue,

and they will be able to piece together what needs to be done and heal

from your absence. It is normal and natural for folks to move on from

organizations and pursue other priorities.

What’s important to remember is that it’s OK to turn off that por-

tion of your being and stop being a programmer. Whether or not you

make that a permanent change is up to you and your desires. Feeling

emotionally drained, uninspired, and burned out is counterproductive

to your programming practice — programming is hard enough. Tak-

ing a break from programming to explore other interests is natural and

doesn’t mean you’re less of a programmer for wanting to do something

different to recharge yourself. If you find that you’re happiest when

you’re not programming then pursue whatever else has your attention

with wild abandon. If you decide to return to programming after being

away for a bit then you can return and pick up your learning practice.

Remember: our lives take many different turns and paths. The best

104 The Mediocre Programmer

path for you is the one you make yourself, regardless of where that

might lead.

Chapter 8

Epilogue

It’s a cliché for an author to say the book they wrote is the one they

wished they had read when they were confronted with the topics pre-

sented in the book. Perhaps it’s a cliché because it’s true: this book

contains the advice that would have helpedme when I started this jour-

ney. Too often I’ve wondered if I’ve measured up to whatever metrics I

created to represent the ideal programmer. Many times I saw the suc-

cess of my peers and wondered if I was defective as a programmer or

deficient in my learning. What was I getting wrong that others were

getting right?

I’ve come to realize that every programmer’s journey is unique.

Your journey is going to wend and wind in directions that are differ-

ent than the directions that my journey took. You’ll have experiences

that I can’t share, and I’ve had experiences that will be difficult for you

to replicate unless you have a time machine. Neither of our experiences

is more or less valid than each others’, nor are they more or less valid

than the experiences of other programmers. These are our experiences.

106 The Mediocre Programmer

The areas of our knowledge are only the areas that we’ve explored so

far. There will always be gaps, but we can define those gaps as the ar-

eas that we haven’t explored yet. There’s always more to explore, and

that exploration is the fun part of the journey.

No traveler can be at all places at all times. They must travel to

each destination as quickly or as slowly as their transport allows, and

stay there for as long as they can before traveling to their next destina-

tion. They travel with whatever companions they can find in whatever

communities they can build. They build relationships and trust with

themselves and others. They use their strengths to help others, and ex-

plore and improve their weaknesses. Each day they press onward. Like

the traveler we too must choose our destinations and our companions.

We can find those who, like us, are traveling down the same road and

help us on our journey. We can exchange stories about our successes

and failures, and experience each day as another link in our journey.

I continue my journey each day and I hope that as a programmer

you continue your journey each day for as long as you are able. We

might not be on the same exact roads together, but we have the same

goal: doing the best we can in each moment.

I wish you well on your journeys, and hope to hear the tales of your

travels when we meet again.

Chapter 9

Gratitude

This book would not exist without the folks who have accompanied me

on my journey, both as instructors and as colleagues. My thanks and

appreciation to all of my instructors in my formative years for giving

me their best efforts to teach me programming in its various forms. I

am indebted to all of my colleagues and programming friends over the

years who shared their knowledge with me and trusted me enough to

help them along the way. I am also blessed to have many communi-

ties that help sustain me, including the Michigan!/usr/group, PyOhio,

Coffee House Coders, and the Ubuntu Michigan Loco. Also to those

who don’t fit in these neat categories; know that if we have spent any

time discussing programming or other matters that our discussions are

deeply appreciated.

I also am grateful for the work of Leo Babauta of Zen Habits which

provided me the ideas of mindfulness and focus containers. They have

been transformative inmy ownwork, as this book demonstrates. I com-

http://mug.org
https://pyohio.org
http://coffeehousecoders.com
htttp://loco.ubuntu.com/teams/ubuntu-us-mi
http://zenhabits.net

108 The Mediocre Programmer

mitted to spending at least 10 minutes each morning writing each sec-

tion, and the results are the work you see before you.

Thank you to those who helped me directly with this project.

Thank you to my mom, Sharon Maloney, for help in my editing of

this book. Any mist steaks what remain are an responsibilities of

the author. Thank you to Beau Sheldon for reviewing the chapter on

mental health and for helping me to better understand and highlight

areas where folks struggle. Thank you to my friend, David Revoy,

for his amazing cover art and for his inspiration throughout the

project. Thank you to Esteban Manchado Velázquez for adding CSS

and cleaning up the HTML version of the text. Thank you to the beta

readers for your valuable comments and feedback in the Framagit

Repository, including (in alphabetical order by handle or first name):

Brendan Kidwell, D. Joe Anderson, David Revoy, Eric Hallam, Jer Lance,

Matthew Piccinato, Matthew Balch, Midgard, Nicholas Guarracino, RJ

Quiralta, Valvin, and Wilhelm Fitzpatrick. Thank you to Paco Esteban,

Shreyas Ragavan, TheOtherNick, and Victorhck for editing fixes.

My deepest gratitude goes to my wife JoDee and my parents for

their support and belief in me. Words cannot express the love and

thanks I have for you.

Appendix A

My journey

My journey as a programmer startedwhen I was in elementary school. I

became interested in computers after reading about them in the World

Book Encyclopedia and hoped to work with them some day. What I

didn’t realize was that those encyclopedias were out-of-date and only

showed the larger, more expensive mainframe and mini-computers of

the 1960s and not the more modern microcomputers that were intro-

duced in the late 1970s. When I realized that an Apple][was a mi-

crocomputer and that it was designed for the home market I began

my quest to get a computer of my own (AKA: I started dropping not-

so-subtle hints to my parents that I wanted a computer). I scoured

magazines like Popular Computing and Byte Magazine looking for the

right computer; from the Commodore VIC-20 and Sinclair ZX-80 to the

Radio Shack TRS-80 Model III (Even the Rockwell AIM-65 or Heathkit

H89 would have worked. I wasn’t picky back then.) My dad took me

to computer stores and I marveled at the variety of machines that were

there (and likely made a few sales-people nervous as I poked and prod-

110 The Mediocre Programmer

ded the new and rather expensive machines). Finally my dad picked up

an Atari 400 computer with tape drive, and I began learning BASIC pro-

gramming in earnest. Around the same time my school opened a “com-

puter lab” with three Commodore PET 4032 machines (complete with

floppy disk drives), and I found myself spending every moment I could

with those machines. In high school I took two programming courses,

one in BASIC and the other in Pascal (which was my first exposure to

procedural languages, and the basic concepts of computer science). In

college I majored in Computer Science with a Bachelor of Science and

did my best to keep up with all of the things that they tried to teach

me. Unfortunately, I wasn’t a great student (especially in mathemat-

ics). I struggled with and later dropped my compilers class, and felt

like I was falling behind where other students succeeded. Most of our

classes used Pascal, which I was becomingmore familiar with, but there

were a few classes that used COBOL, Ada, SNOBOL, C, and assembly

language. I graduated with modest scores and returned home.

Throughout my career I’ve straddled the divide between system ad-

ministration and programming. Linux was similar to the SunOS ma-

chines that I admired in college, so I transitioned to using that as my

primary OS around 1995. My first jobs taskedmewithmaintaining var-

ious sorts of computers: desktop PCs, UNIX-based machines, and back-

ing up the occasional VAX machine. It wasn’t until one of my positions

needed a website that I added more programming to my resume. Pro-

gramming websites in the 1990s was where I really started to learn and

understand Perl, SQL, relational databases, and HTML. The web was so

new in the 1990s that all of the folks on our projects were learning at

the same time. I leveraged my Perl knowledge into several other jobs

Appendix A - My journey 111

and projects doing web-based programming. Perl in the 1990s was a

language where the basics were simple to learn but the language could

handle really complex ideas and data structures. Perl and CGI made

it easy to get something onto a web page that had some interactivity.

Where Perl becomes complex is the syntax for things like regular ex-

pressions, and the tendency for Perl programmers to value code that

does multiple actions on the same line. The Perl community also val-

ues code that is clever, which lead me to wonder on several occasions

if I was clever enough to be a Perl programmer.

One of the companies I worked at decided to migrate a Perl sys-

tem over to a Java-based environment. They looked at the skills of the

existing development team and decided they needed to outsource the

project to another company. This was a common trend in the early

2000s for reasons that are outside of the scope of this book. This gave

me my first taste as a team leader. I know a lot of programmers mi-

grate over into managerial roles but at the time I didn’t feel I had fully

explored my programming potential. I sat down on several occasions

and tried to learn Java but it never clicked for me. Java web develop-

ment always felt more cumbersome than Perl CGI scripts that I created.

It also didn’t help that we were shipping .war files into a Tomcat sys-

tem, which seemed like they were comprised of a lot of configuration

metadata and very little code. This is what I was referring to when I

spoke about being OK with giving up on learning something — some-

times what we try to learn is more of a chore. Having something that

is a chore isn’t going to provide a good learning experience.

It was around this time that I began learning Python on my own

using Pygame. I took the plunge by entering my first Pyweek compe-

http://pyweek.org

112 The Mediocre Programmer

tition. Pyweek is a week-long competition where folks build an entire

game from scratch in one week. It was a challenge, but was also one

of the most rewarding experiences I’ve had in programming. I built a

game called “Busy Busy Bugs” that was playable during a time when I

really didn’t know what I was doing. In many ways I was learning to

swim by throwing myself into the proverbial deep end. I wasn’t in any

danger, but the desire to get something done at the end of a week drove

me in ways I didn’t think was possible.

As the technical lead position continued I found myself wanting

to do something else. I interviewed at several places and was hired at

Sourceforge as a member of the Systems Operations Group. Source-

forge was an amazing experience for me. I dreamed of working for an

Open Source company, and few Open Source companies were as well-

regarded as Sourceforge and Slashdot were in the Open Source commu-

nity, but my insecurities and “impostor syndrome” kicked in. Would I

be able to cut it? Would they hire me only to realize they’d made a

mistake and I wasn’t as good as I claimed to be? I was friends with and

had gone to school with several of the people who worked at Source-

forge / Slashdot, so I wondered about their motivations for hiring me.

Was my getting hired an elaborate prank, or was I hired because several

folks in the company knew me? All of these thoughts ran through my

head while I worked there. It didn’t help that my position was primar-

ily system administration at a level that I was inexperienced at. There

was also a programming component to the position, but I constantly

felt like I was in way over my head. I lived in constant fear that I was

going to be found out and that the job that I wanted would no longer

be available to me. Granted I learned a lot and had very supportive

Appendix A - My journey 113

and kind management at Sourceforge but I lived in dread whenever my

manager would check in on me because I feared that the conversation

would only highlight that I wasn’t really supposed to be there.

I’d love to say that it had a happy ending and that my fears were

unfounded, but sadly I was let go from that position due to budgetary

constraints. I’m grateful for the opportunities I had there, the friends I

made, and the experiences I had but I’d be lying if the layoff didn’t come

with a mixture of sadness and relief. Sadness that I might never have a

cool job like that again, and relief that I could put away those impostor

syndrome feelings for the time being. In many ways I grew from the

experience of working at Sourceforge and learned a lot about myself

and my capabilities while working there, but it was also the position

where I felt my impostor syndrome at its fullest.

Later on I was hired for a full-time position doing Python program-

ming. This position allowed me to strengthen my craft as a Python

developer. I created many interesting projects there and kept learning

more about Python. It helped me to recuperate and broaden my skills.

The folks at this position were very supportive and kind. There were

times where it got stressful (all jobs seem have stress), but overall it

was a positive experience.

Sadly I was also laid off from that position (money sucks, y’know?).

I started my job search in earnest and went to a bunch of inter-

views. While everyone in the interviews seemed impressed with my

skills and my career I fell into one of two categories: either I wasn’t a

good fit for the position, or I didn’t have enough skills in areas theywere

looking for. I found myself taking timed-coding-tests that felt like they

were testing whether I got stressed easily rather than any coding skills

114 The Mediocre Programmer

I might have. I sat in coding sessions with shadowy figures that barked

out commands and requirements while I tried my best to follow them.

I did math puzzles and logic problems (which is horrifying if you’re not

good at either math or logic problems). Promising leads turned into re-

jection letters (assuming I heard back at all), and desperation set in as

I faced the real prospect that I would have to give up programming if I

wanted to make a living. Visions of heading back to the beginnings of

my career filled me with dread. It seemed like nobody wanted to take

a chance on me anymore, and I couldn’t compete with so many new

programmers who hadn’t made the mistakes that I had in my career.

I registered themediocreprogrammer.com during this period. If I

was going to be a fuck-up then I might as well own it.

Fortunately, I’ve had a community of friends and fellow program-

mers to help support me. My current position is contracting with one of

these friends to help him with programming tasks. That position came

about from showing up to PyOhio (a programming conference) every

year. Throughout my struggles I’ve been fortunate to have a commu-

nity there to help me. This is why I think communities are so great —

they give us a network of folks that we might not otherwise have, and

help us through our triumphs and our struggles.

I’m a collection of all of these experiences. They all make me who I

am. Sometimes I wonder if I should have taken a different path or done

something different, but that’s a futile exercise. The best I can do with

these experiences is learn from them and move on. Each day I work to

improve and better myself. Each day I make new mistakes, but that’s

all part of the learning process.

My journey continues.

	Introduction
	The Mediocre Programmer?
	Why this book?
	Disclaimer

	Journey of The Mediocre Programmer
	How we got here
	The Gap
	Closing The Gap
	The Journey is the Reward

	Traveling Companions
	Famous programmers
	Backstage vs. performance
	The lure of the post-mortem
	Ranking programmers
	Measuring programmer output
	Traveling Companions

	The mistakes along the way
	Whoops!
	Avoiding mistakes
	Making a model
	Time machines
	Learning from failure
	Journaling our mistakes

	The inns we stayed at
	Fellow travelers
	Finding a good community
	The difficulty in finding a good community
	Things to look for in a good community

	A day's journey
	Riding until dawn
	Lights out
	Taking a break
	Productive thinking
	Containers
	Distractions

	The map is not the territory
	The changing landscape of programming
	Learning to learn
	How to choose what to learn
	Resistance and The Container
	Mapping out longer-term goals
	Failure and learning
	Dead ends and changing topography
	Approach with curiosity

	The struggle within
	The emotions of programming
	Emotional drains
	Purpose and utility
	Engagement vs. boredom
	Awake vs. tired
	Mental state

	Awareness of our Emotional State
	Our story
	Awareness in action
	Finding our feelings
	Emotional Triage
	Burnout
	Reaching out for help
	Giving up

	Epilogue
	Gratitude
	My journey

